Syndicate content
Recent documents in eScholarship@UMMS
Updated: 39 min 45 sec ago

Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm

Mon, 08/31/2015 - 11:16am

Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme

Mon, 08/31/2015 - 11:16am

Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.

An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments

Mon, 08/31/2015 - 11:16am

Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2-3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved.

An enhanced gene targeting toolkit for Drosophila: Golic+

Mon, 08/31/2015 - 11:16am

Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer "genes" in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report G: ene targeting during O: ogenesis with L: ethality I: nhibitor and C: RISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.

Viral infection of engrafted human islets leads to diabetes

Mon, 08/31/2015 - 11:16am

Type 1 diabetes (T1D) is characterized by the destruction of the insulin-producing beta-cells of pancreatic islets. Genetic and environmental factors both contribute to T1D development. Viral infection with enteroviruses is a suspected trigger for T1D, but a causal role remains unproven and controversial. Studies in animals are problematic because of species-specific differences in host cell susceptibility and immune responses to candidate viral pathogens such as coxsackievirus B (CVB). In order to resolve the controversial role of viruses in human T1D, we developed a viral infection model in immunodeficient mice bearing human islet grafts. Hyperglycemia was induced in mice by specific ablation of native beta-cells. Human islets, which are naturally susceptible to CVB infection, were transplanted to restore normoglycemia. Transplanted mice were infected with CVB4 and monitored for hyperglycemia. Forty-seven percent of CVB4-infected mice developed hyperglycemia. Human islet grafts from infected mice contained viral RNA, expressed viral protein, and had reduced insulin levels compared with grafts from uninfected mice. Human-specific gene expression profiles in grafts from infected mice revealed the induction of multiple interferon-stimulated genes. Thus, human islets can become severely dysfunctional with diminished insulin production after CVB infection of beta-cells, resulting in diabetes. long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

High-resolution chromatin dynamics during a yeast stress response

Mon, 08/31/2015 - 11:16am

Covalent histone modifications are highly conserved and play multiple roles in eukaryotic transcription regulation. Here, we mapped 26 histone modifications genome-wide in exponentially growing yeast and during a dramatic transcriptional reprogramming-the response to diamide stress. We extend prior studies showing that steady-state histone modification patterns reflect genomic processes, especially transcription, and display limited combinatorial complexity. Interestingly, during the stress response we document a modest increase in the combinatorial complexity of histone modification space, resulting from roughly 3% of all nucleosomes transiently populating rare histone modification states. Most of these rare histone states result from differences in the kinetics of histone modification that transiently uncouple highly correlated marks, with slow histone methylation changes often lagging behind the more rapid acetylation changes. Explicit analysis of modification dynamics uncovers ordered sequences of events in gene activation and repression. Together, our results provide a comprehensive view of chromatin dynamics during a massive transcriptional upheaval.

The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis

Mon, 08/31/2015 - 11:16am

The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation.

Access to care and use of the Internet to search for health information: results from the US National Health Interview Survey

Mon, 08/31/2015 - 11:16am

BACKGROUND: The insurance mandate of the Affordable Care Act has increased the number of people with health coverage in the United States. There is speculation that this increase in the number of insured could make accessing health care services more difficult. Those who are unable to access care in a timely manner may use the Internet to search for information needed to answer their health questions.

OBJECTIVE: The aim was to determine whether difficulty accessing health care services for reasons unrelated to insurance coverage is associated with increased use of the Internet to obtain health information.

METHODS: Survey data from 32,139 adults in the 2011 National Health Interview Study (NHIS) were used in this study. The exposure for this analysis was reporting difficulty accessing health care services or delaying getting care for a reason unrelated to insurance status. To define this exposure, we examined 8 questions that asked whether different access problems occurred during the previous 12 months. The outcome for this analysis, health information technology (HIT) use, was captured by examining 2 questions that asked survey respondents if they used an online health chat room or searched the Internet to obtain health information in the previous 12 months. Several multinomial logistic regressions estimating the odds of using HIT for each reported access difficulty were conducted to accomplish the study objective.

RESULTS: Of a survey population of 32,139 adults, more than 15.90% (n=5109) reported experiencing at least one access to care barrier, whereas 3.63% (1168/32,139) reported using online health chat rooms and 43.55% (13,997/32,139) reported searching the Internet for health information. Adults who reported difficulty accessing health care services for reasons unrelated to their health insurance coverage had greater odds of using the Internet to obtain health information. Those who reported delaying getting care because they could not get an appointment soon enough (OR 2.2, 95% CI 1.9-2.5), were told the doctor would not accept them as a new patient or accept their insurance (OR 2.1, 95% CI 1.7-2.5 and OR 2.1, 95% CI 1.7-2.5, respectively), or because the doctor's office was not open when they could go (OR 2.2, 95% CI 1.9-2.7) had more than twice the odds of using the Internet to obtain health information compared to those who did not report such access difficulties.

CONCLUSIONS: People experiencing trouble accessing health care services for reasons unrelated to their insurance status are more likely to report using the Internet to obtain health information. Improving the accuracy and reliability of health information resources that are publicly available online could help those who are searching for information due to trouble accessing health care services.

Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress

Mon, 08/31/2015 - 11:16am

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting in opposition to let-7-Fam miRNA activity, possibly via the downstream Activating Transcription Factor-7 (ATF-7). Furthermore, let-7-Fam miRNAs appear to exert negative regulation on the worm's resistance to P. aeruginosa infection. Our results show that the inhibition of pathogen resistance by let-7 involves downstream heterochronic genes and the p38 MAPK pathway. These findings suggest that let-7-Fam miRNAs are integrated into innate immunity gene regulatory networks, such that this family of miRNAs modulates immune responses while also ensuring robust timing of developmental events under pathogen stress.

Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production

Mon, 08/31/2015 - 11:16am

PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.

Tailor: a computational framework for detecting non-templated tailing of small silencing RNAs

Mon, 08/31/2015 - 11:16am

Small silencing RNAs, including microRNAs, endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been shown to play important roles in fine-tuning gene expression, defending virus and controlling transposons. Loss of small silencing RNAs or components in their pathways often leads to severe developmental defects, including lethality and sterility. Recently, non-templated addition of nucleotides to the 3' end, namely tailing, was found to associate with the processing and stability of small silencing RNAs. Next Generation Sequencing has made it possible to detect such modifications at nucleotide resolution in an unprecedented throughput. Unfortunately, detecting such events from millions of short reads confounded by sequencing errors and RNA editing is still a tricky problem. Here, we developed a computational framework, Tailor, driven by an efficient and accurate aligner specifically designed for capturing the tailing events directly from the alignments without extensive post-processing. The performance of Tailor was fully tested and compared favorably with other general-purpose aligners using both simulated and real datasets for tailing analysis. Moreover, to show the broad utility of Tailor, we used Tailor to reanalyze published datasets and revealed novel findings worth further experimental validation. The source code and the executable binaries are freely available at

SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases

Mon, 08/31/2015 - 11:16am

The DNA damage response to double-strand breaks (DSBs) is critical for cellular viability. Recent work has shown that a host of chromatin regulators are recruited to a DSB, and that they are important for the DNA damage response. However, the functional relationships between different chromatin regulators at DSBs remain unclear. Here we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.X (gammaH2AX). Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.

Role of Hdac3 in Murine Coronary Vessel Development: A Master's Thesis

Fri, 08/28/2015 - 4:31pm

Coronary vessel development is a crucial part of heart development requiring the interplay of the epicardial, myocardial and endocardial layers of the heart for proper formation. Coronary vascularization is regulated by a host of transcription factors further regulated by chromatin remodeling enzymes, including Histone Deacetylases (HDACs). To investigate the functions of HDACs in coronary vascular development, we have deleted Hdac3 in endocardial cells using Cre LoxP technology. Endocardial cell-­‐specific deletion of Hdac3 results in aberrant coronary vessel formation and complete postnatal lethality. We have thus shown that Hdac3 is a critical regulator of the coronary vascular development pathway.

The Feasibility and Acceptability of Google Glass for Teletoxicology Consults

Fri, 08/28/2015 - 8:25am

Teletoxicology offers the potential for toxicologists to assist in providing medical care at remote locations, via remote, interactive augmented audiovisual technology. This study examined the feasibility of using Google Glass, a head-mounted device that incorporates a webcam, viewing prism, and wireless connectivity, to assess the poisoned patient by a medical toxicology consult staff. Emergency medicine residents (resident toxicology consultants) rotating on the toxicology service wore Glass during bedside evaluation of poisoned patients; Glass transmitted real-time video of patients' physical examination findings to toxicology fellows and attendings (supervisory consultants), who reviewed these findings. We evaluated the usability (e.g., quality of connectivity and video feeds) of Glass by supervisory consultants, as well as attitudes towards use of Glass. Resident toxicology consultants and supervisory consultants completed 18 consults through Glass. Toxicologists viewing the video stream found the quality of audio and visual transmission usable in 89 % of cases. Toxicologists reported their management of the patient changed after viewing the patient through Glass in 56 % of cases. Based on findings obtained through Glass, toxicologists recommended specific antidotes in six cases. Head-mounted devices like Google Glass may be effective tools for real-time teletoxicology consultation.

Cancers of Unknown Primary

Thu, 08/27/2015 - 10:45am

Cancers of unknown primary (CUP) are a heterogeneous group of histologically proven metastatic tumors whose primary site can't be determined after a standard diagnostic and pathologic work-up. This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist presents provides an overview of cancers of unknown primary, including initial evaluation and principles of treatment.

Higher-Order Unfolding of Peri/Centric Satellite Heterochromatin is an Early and Consistent Event in Cell Senescence: A Dissertation

Wed, 08/26/2015 - 11:47am

Cellular senescence is thought to play an essential role in many biological functions including tumor suppression and organismal aging. Senescent cells, which are permanently removed from the cell cycle, can be found both in vivo in many different tissue types and in vitro within cultures of non-immortalized cells. Despite their inability to proliferate, these cells persist and remain metabolically active for indefinite periods of time. This physiologic process occurs in response to a variety of cellular insults including oxidative stress, shortened telomeres, constitutive oncogene expression, and DNA damage, and can be initiated by upregulation of one of the two known senescent pathways, involving p16/Rb or p53/p21. The senescent cell phenotype is also characterized by changes to cell and nuclear morphology and to the secretory profile of the cell.

Related to changes in nuclear morphology, epigenetic modifications to the packaging of DNA are thought to be key to the initiation and maintenance of the senescence program. While a large number of earlier studies focused on the findings that senescent cells gain regions of condensed heterochromatin, often in the form of Senescent Associated Heterochromatin Foci (SAHF), this thesis work shows that there is a marked loss of heterochromatin in the peri/centromeric regions of the genome. In fact, both α-satellite and satellite II sequences across the genome distend in a striking and unanticipated fashion; this can be readily visualized by fluorescence in situ hybridization (FISH) as their structure changes from a condensed spot to highly elongated and fine thread-like signals. We have termed this exceptional decondensation of constitutive heterochromatin Senescence Associated Distension of Satellites (SADS). Importantly, a series of experiments shows that SADS is both a consistent and an early event in the cell senescence process, which occurs as a result of every senescence induction method examined. We also observed that this distension was characteristic of both human and murine cells and in vivo in human benign Prostatic Intraepithelial Neoplasia (PIN) tissue. Furthermore, unlike SAHF formation, SADS can occur due to the activation of either of the two senescence pathways, p16/Rb or p53/p21.

Additionally, the cytological dimensions of the thread-like satellite signals indicates that SADS represents “unraveling” of DNA on an unprecedented scale. Thus, it was surprising that this event was not facilitated by changes to several canonical histone modifications associated with condensed heterochromatin, namely H3K9Me3, H3K27Me3, or H3K4Me3, nor is it caused by loss of DNA methylation. Consequently, we believe that this marked distension of satellite DNA is due to changes in higher-order folding of the chromatin fiber. This is important for understanding fundamental events in the cell senescence process, but also provides a unique system for study of chromatin packaging that may provide new insights into the organization of DNA well beyond nucleosome packaging and the ten nanometer fiber. In fact, initial super resolution images of SADS suggest that the satellite sequences may be organized into domains or “globules”. Hence, we suggest that the changes to satellite sequence packaging may be facilitated by changes to higher-order nuclear structural proteins, such as LaminB1, which is reduced in senescent cells.

Finally, this work provides analysis of the literature and preliminary experiments to consider the possibility that there are increased levels of cell senescence in Down syndrome (trisomy 21) cells. As individuals with Down syndrome (DS) experience many manifestations of premature aging (including early-onset Alzheimer’s Disease), have a resistance to solid tumor formation, are more susceptible to oxidative stress, and are trisomic for several genes implicated in causing senescence, our analysis provides plausibility for the hypothesis that accelerated rates of senescence may play a significant role in DS physiology. We also provide results of preliminary studies and outline the next steps for experimentation, using DS fibroblasts and a unique genetically engineered DS iPS cell system. As a final note, the quantification of cell senescence in trisomic versus disomic cells for these experiments relies substantially on the new single-cell marker of senescence discovered and established by this theses work, the Senescence-Associated Distension of Satellites.

Safety Monitoring and Withdrawal of Psychiatric Research Participants

Wed, 08/26/2015 - 10:43am

This chapter examines how clinical investigators ensure the safety of psychiatric research participants while maintaining the integrity of research protocols. It discusses the ethical issues arising from data monitoring, disclosure of interim data, and termination of clinical trials. It outlines unique features of psychiatric research and related cultural issues that may warrant consideration before and during clinical trials. It focuses on the Data Safety Monitoring Boards (DSMBs) overseeing clinical trials their development of detailed plans for monitoring safety and protocol adherence. It looks at the use of statistical programs by DSMBs to document the progression of research studies and make early termination decisions; whether DSMBs actually improve the safety of participants or the integrity of research; how independent DSMBs are; and the factors that DSMBs consider when terminating a trial. Cultural issues involved in clinical trials and challenges that may compromise the neutrality and function of DSMBs are analyzed.

Response to: The Selective Allure of Neuroscience and Its Implications for The Courtroom

Wed, 08/26/2015 - 10:43am

In Selective Allure of Neuroscience and Its Implications for the Courtroom, Shniderman adds to an already long list of reasons for why attorneys and trial consultants should be cautious in using neuroscientific evidence in legal proceedings. Scurich and Shniderman (2014) found that individuals evaluated the scientific validity of neuroscientific evidence based on preexisting beliefs. At first glance, this study might seem like another example of scientists proving a well-known concept that juries and judges bring their individual experiences into the courtroom. In fact, voir dire is premised on identifying individuals with particular types of beliefs that may produce a particular type of verdict. However, on closer examination, the findings from this study highlight a different point – introduction of neuroscientific research may backfire, or in the very least not produce the intended results. And, not knowing how the jury or a judge will interpret a particular type of evidence should be disconcerting to attorneys, legal consultants and experts.

The Expert Witness as a Traveling Sprinkler

Wed, 08/26/2015 - 10:43am

An essay about delivering good expert testimony.