eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 1 hour 45 min ago

Circulating Cell and Plasma microRNA Profiles Differ between Non-ST-Segment and ST-Segment-Elevation Myocardial Infarction

Thu, 01/29/2015 - 9:35pm

BACKGROUND: Differences in plasma and whole blood expression microRNAs (miRNAs) in patients with an acute coronary syndrome (ACS) have been determined in both in vitro and in vivo studies. Although most circulating miRNAs are located in the cellular components of whole blood, little is known about the miRNA profiles of whole blood subcomponents, including plasma, platelets and leukocytes in patients with myocardial ischemia.

METHODS: Thirteen patients with a ST-segment-elevation (STEMI) or non-ST-segment elevation (NSTEMI) myocardial infarction were identified in the University of Massachusetts Medical Center Emergency Department (ED) or cardiac catheterization laboratory between February and June of 2012. Whole blood was obtained from arterial blood samples at the time of cardiac catheterization and cell-specific miRNA profiling was performed. Expression of 343 miRNAs was quantified from whole blood, plasma, platelets, and peripheral blood mononuclear cells using a high-throughput, quantitative Real-Time polymerase-chain reaction system (qRT-PCR).

RESULTS: MiRNAs associated with STEMI as compared to NSTEMI patients included miR-25-3p, miR-221-3p, and miR-374b-5p. MiRNA 30d-5p was associated with plasma, platelets, and leukocytes in both STEMI and NSTEMI patients; miRNAs 221-3p and 483-5p were correlated with plasma and platelets only in NSTEMI patients.

CONCLUSIONS: Cell-specific miRNA profiles differed between patients with STEMI and NSTEMI. The miRNA distribution is also unique amongst plasma, platelets, and leukocytes in patients with ischemic heart disease or ACS. Our findings suggest unique miRNA profiles among the circulating subcomponents in patients presenting with myocardial ischemia.

Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression

Thu, 01/29/2015 - 9:35pm

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition.

The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans

Thu, 01/29/2015 - 9:35pm

MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad dysfunction combined with a severe sperm defect sharply reduces fecundity. Multiple lines of evidence, including a late embryonic temperature-sensitive period, support a role for mir-35-41 early during development to promote subsequent sperm production in later larval stages. We further show that the predicted mir-35 family target sup-26 (suppressor-26) acts downstream of mir-35-41 in this process, suggesting that sup-26 de-repression in mir-35-41 deletion mutants may contribute to temperature-sensitive loss of fecundity. In addition, these microRNAs play a role in male fertility, promoting proper morphogenesis of male-specific mating structures. Overall, our results demonstrate that robust activity of the mir-35-42 family microRNAs not only is essential for embryonic development across a range of temperatures but also enables the worm to subsequently develop full reproductive capacity.

An efficient and sensitive method for preparing cDNA libraries from scarce biological samples

Thu, 01/29/2015 - 9:35pm

The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate that the method provides a significant improvement in sensitivity compared to previous cloning methods while maintaining reproducible identification of diverse small RNA species. This method should have widespread applications in a variety of contexts, including biomarker discovery from scarce samples of human tissue or body fluids.

Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis

Thu, 01/29/2015 - 9:35pm

We have identified, by quantitative real-time PCR, hundreds of miRNAs that are dramatically elevated in the plasma or serum of acetaminophen (APAP) overdose patients. Most of these circulating microRNAs decrease toward normal levels during treatment with N-acetyl cysteine (NAC). We identified a set of 11 miRNAs whose profiles and dynamics in the circulation during NAC treatment can discriminate APAP hepatotoxicity from ischemic hepatitis. The elevation of certain miRNAs can precede the dramatic rise in the standard biomarker, alanine aminotransferase (ALT), and these miRNAs also respond more rapidly than ALT to successful treatment. Our results suggest that miRNAs can serve as sensitive diagnostic and prognostic clinical tools for severe liver injury and could be useful for monitoring drug-induced liver injury during drug discovery.

miR-14 Regulates Autophagy during Developmental Cell Death by Targeting ip3-kinase 2

Thu, 01/29/2015 - 9:35pm

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling.

Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans

Thu, 01/29/2015 - 9:35pm

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing and proliferative behavior in the seam cell lineages. We show that mutations of genes in the heterochronic developmental timing pathway, including lin-14 (lineage defect), lin-28, lin-46, and the lin-4 and let-7 (lethal defects)-family microRNAs, affect the activity of LIT-1/POP-1 cellular asymmetry machinery and APR-1 polarity during larval development. Surprisingly, heterochronic mutations that enhance LIT-1 activity in seam cells can simultaneously also enhance the opposing, POP-1 activity, suggesting a role in modulating the potency of the cellular polarizing activity of the LIT-1/POP-1 system as development proceeds. These findings illuminate how the evolutionarily conserved cellular asymmetry machinery can be coupled to microRNA-regulated developmental pathways for robust regulation of stem cell maintenance and proliferation during the course of development. Such genetic interactions between developmental timing regulators and cell polarity regulators could underlie transitions between asymmetric and symmetric stem cell fates in other systems and could be deregulated in the context of developmental disorders and cancer.

Literature Search Strategy Week: Martha Meacham on Constructing a Literature Search – The Vocabulary Roadmap

Tue, 01/27/2015 - 3:22pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Literature Search Strategy Week: Len Levin on Understanding and Finding Grey Literature

Tue, 01/27/2015 - 3:22pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Literature Search Strategy Week: Molly Higgins on the Best Databases for Everything

Tue, 01/27/2015 - 3:22pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Literature Search Strategy Week: Judy Nordberg and Nancy Harger on Citation Management

Tue, 01/27/2015 - 3:22pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Literature Search Strategy Week: Lisa Palmer on Using My NCBI to Save PubMed Searches and Citations and Customize Your Display

Tue, 01/27/2015 - 3:22pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Literature Search Strategy Week: Judy Savageau and Laura Sefton on Library Resources and the Important Role They Play in Evaluation Work

Tue, 01/27/2015 - 2:25pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Sherry Campanelli and Laura Newhall on The Best Laid Plans: Navigating the Potholes and Pitfalls of Group Facilitation

Tue, 01/27/2015 - 2:25pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Carla Hillerns and Pei-Pei Lei on You had me at Hello: Effective Email Subject Lines for Survey Invitations

Tue, 01/27/2015 - 2:25pm

Blog post to AEA365, a blog sponsored by the American Evaluation Association (AEA) dedicated to highlighting Hot Tips, Cool Tricks, Rad Resources, and Lessons Learned for evaluators. The American Evaluation Association is an international professional association of evaluators devoted to the application and exploration of program evaluation, personnel evaluation, technology, and many other forms of evaluation. Evaluation involves assessing the strengths and weaknesses of programs, policies, personnel, products, and organizations to improve their effectiveness.

Protected Graft Copolymer (PGC) in Imaging and Therapy: A Platform for the Delivery of Covalently and Non-Covalently Bound Drugs

Tue, 01/27/2015 - 12:41pm

Initially developed in 1992 as an MR imaging agent, the family of protected graft copolymers (PGC) is based on a conjugate of polylysine backbone to which methoxypoly(ethylene glycol) (MPEG) chains are covalently linked in a random fasion via N-epsilon-amino groups. While PGC is relatively simple in terms of its chemcial composition and structure, it has proved to be a versatile platform for in vivo drug delivery. The advantages of poly amino acid backbone grafting include multiple available linking sites for drug and adaptor molecules. The grafting of PEG chains to PGC does not compromise biodegradability and does not result in measurable toxicity or immunogenicity. In fact, the biocompatablility of PGC has resulted in its being one of the few 100% synthetic non-proteinaceous macromolecules that has suceeded in passing the initial safety phase of clinical trials. PGC is capable of long circulation times after injection into the blood stream and as such found use early on as a carrier system for delivery of paramagnetic imaging compounds for angiography. Other PGC types were later developed for use in nuclear medicine and optical imaging applications in vivo. Recent developments in PGC-based drug carrier formulations include the use of zinc as a bridge between the PGC carrier and zinc-binding proteins and re-engineering of the PGC carrier as a covalent amphiphile that is capabe of binding to hydrophobic residues of small proteins and peptides. At present, PGC-based formulations have been developed and tested in various disease models for: 1) MR imaging local blood circulation in stroke, cancer and diabetes; 2) MR and nuclear imaging of blood volume and vascular permeability in inflammation; 3) optical imaging of proteolytic activity in cancer and inflammation; 4) delivery of platinum(II) compounds for treating cancer; 5) delivery of small proteins and peptides for treating diabetes, obesity and myocardial infarction. This review summarizes the experience accumulated by various research groups that chose to use PGC as a drug delivery platform.

Molecular magnetic resonance contrast agents for the detection of cancer: past and present

Tue, 01/27/2015 - 12:41pm

Magnetic resonance imaging (MRI) is a powerful diagnostic tool with unsurpassed spatial resolution that is capable of providing detailed information about the structure and composition of tumors. The use of exogenously administered contrast agents allows compartment-specific enhancement of tumors, enabling imaging of functional blood and interstitial volumes. Current efforts are directed at enhancing the capabilities of MRI in oncology by adding contrast agents with molecular specificities to the growing armamentarium of diagnostic probes that produce signal by changing local proton relaxation times as a consequence of specific contrast agent binding to cell surface receptors or extracellular matrix components. We review herein the most notable examples, illustrating major trends in the development of specific probes for high-resolution imaging in molecular oncology.

Fluorescent macromolecular sensors of enzymatic activity for in vivo imaging

Tue, 01/27/2015 - 12:41pm

Macromolecular imaging probes (or sensors) of enzymatic activity have a unique place in the armamentarium of modern optical imaging techniques. Such probes were initially developed by attaching optically "silent" fluorophores via enzyme-sensitive linkers to large copolymers of biocompatible poly(ethylene glycol) and poly(amino acids). In diseased tissue, where the concentration of enzymes is high, the fluorophores are freed from the macromolecular carrier and regain their initial ability to fluoresce, thus allowing in vivo optical localization of the diseased tissue. This chapter describes the design and application of these probes and their alternatives in various areas of experimental medicine and gives an overview of currently available techniques that allow imaging of animals using visible and near-infrared light.

MR Imaging of Myeloperoxidase Activity in a Model of the Inflamed Aneurysm Wall

Tue, 01/27/2015 - 12:41pm

BACKGROUND AND PURPOSE: Although myeloperoxidase activity in vivo can be visualized by using noninvasive imaging, successful clinical translation requires further optimization of the imaging approach. We report a motion-sensitized driven-equilibrium MR imaging approach for the detection of a myeloperoxidase activity-specific gadolinium-containing imaging agent in experimental aneurysm models, which compensates for irregular blood flow, enabling vascular wall imaging in the aneurysm.

MATERIALS AND METHODS: A phantom was built from rotational angiography of a rabbit elastase aneurysm model and was connected to a cardiac pulse duplicator mimicking rabbit-specific flow conditions. A T1-weighted turbo spin-echo-based motion-sensitized driven-equilibrium pulse sequence was optimized in vitro, including the addition of fat suppression and the selection of the velocity-encoding gradient parameter. The optimized sequence was applied in vivo to rabbit aneurysm models with and without inflammation in the aneurysmal wall. Under each condition, the aneurysms were imaged before and after intravenous administration of the imaging agent. The signal-to-noise ratio of each MR imaging section through the aneurysm was calculated.

RESULTS: The motion-sensitized driven-equilibrium sequence was optimized to reduce flow signal, enabling detection of the myeloperoxidase imaging agent in the phantom. The optimized imaging protocol in the rabbit model of saccular aneurysms revealed a significant increase in the change of SNR from pre- to post-contrast MR imaging in the inflamed aneurysms compared with naive aneurysms and the adjacent carotid artery (P < .0001).

CONCLUSIONS: A diagnostic MR imaging protocol was optimized for molecular imaging of a myeloperoxidase-specific molecular imaging agent in an animal model of inflamed brain aneurysms.

Aneurysm permeability following coil embolization: packing density and coil distribution

Tue, 01/27/2015 - 12:41pm

BACKGROUND: Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability.

METHODS: Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity.

RESULTS: All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p < 0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures.

CONCLUSIONS: A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.