Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 45 min ago

Cancer-Relevant Splicing Factor CAPERalpha Engages the Essential Splicing Factor SF3b155 in a Specific Ternary Complex

Tue, 06/10/2014 - 11:09am

U2AF Homology Motifs (UHMs) mediate protein-protein interactions with U2AF Ligand Motifs (ULMs) of pre-mRNA splicing factors. The UHM-containing alternative splicing factor CAPERalpha regulates splicing of tumor-promoting VEGF isoforms, yet the molecular target of the CAPERalpha UHM is unknown. Here, we present structures of the CAPERalpha UHM bound to a representative SF3b155 ULM at 1.7 A resolution, and for comparison, in the absence of ligand at 2.2 A resolution. The prototypical UHM/ULM interactions authenticate CAPERalpha as a bona fide member of the UHM-family of proteins. We identify SF3b155 as the relevant ULM-containing partner of full-length CAPERalpha in human cell extracts. Isothermal titration calorimetry comparisons of the purified CAPERalpha UHM binding known ULM-containing proteins demonstrate that high affinity interactions depend on the presence of an intact, intrinsically-unstructured SF3b155 domain containing seven ULM-like motifs. The interplay among bound CAPERalpha molecules gives rise to the appearance of two high affinity sites in the SF3b155 ULM-containing domain. In conjunction with the previously-identified, UHM/ULM-mediated complexes of U2AF65 and SPF45 with SF3b155, this work demonstrates the capacity of SF3b155 to offer a platform for coordinated recruitment of UHM-containing splicing factors.

Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan

Tue, 06/10/2014 - 11:09am

BACKGROUND: Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. RESULTS: Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. CONCLUSIONS: Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast

Tue, 06/10/2014 - 11:09am

In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.

Estrogen defines the dorsal-ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche

Tue, 06/10/2014 - 11:09am

Genetic control of hematopoietic stem and progenitor cell (HSPC) function is increasingly understood; however, less is known about the interactions specifying the embryonic hematopoietic niche. Here, we report that 17beta-estradiol (E2) influences production of runx1+ HSPCs in the AGM region by antagonizing VEGF signaling and subsequent assignment of hemogenic endothelial (HE) identity. Exposure to exogenous E2 during vascular niche development significantly disrupted flk1+ vessel maturation, ephrinB2+ arterial identity, and specification of scl+ HE by decreasing expression of VEGFAa and downstream arterial Notch-pathway components; heat shock induction of VEGFAa/Notch rescued E2-mediated hematovascular defects. Conversely, repression of endogenous E2 activity increased somitic VEGF expression and vascular target regulation, shifting assignment of arterial/venous fate and HE localization; blocking E2 signaling allowed venous production of scl+/runx1+ cells, independent of arterial identity acquisition. Together, these data suggest that yolk-derived E2 sets the ventral boundary of hemogenic vascular niche specification by antagonizing the dorsal-ventral regulatory limits of VEGF.