eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 44 min ago

c-Jun NH2-terminal kinase is required for lineage-specific differentiation but not stem cell self-renewal

Thu, 08/25/2016 - 2:12pm

The c-Jun NH(2)-terminal kinase (JNK) is implicated in proliferation. Mice with a deficiency of either the Jnk1 or the Jnk2 genes are viable, but a compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality. Studies using conditional gene ablation and chemical genetic approaches demonstrate that the combined loss of JNK1 and JNK2 protein kinase function results in rapid senescence. To test whether this role of JNK was required for stem cell proliferation, we isolated embryonic stem (ES) cells from wild-type and JNK-deficient mice. We found that Jnk1(-/-) Jnk2(-/-) ES cells underwent self-renewal, but these cells proliferated more rapidly than wild-type ES cells and exhibited major defects in lineage-specific differentiation. Together, these data demonstrate that JNK is not required for proliferation or self-renewal of ES cells, but JNK plays a key role in the differentiation of ES cells.

Differential activation of p38MAPK isoforms by MKK6 and MKK3

Thu, 08/25/2016 - 2:12pm

All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38alpha, p38beta, p38gamma and p38delta) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38alpha has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38beta, gamma and delta activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38gamma and p38beta induced by environmental stress, whereas MKK6 is the major p38gamma activator in response to TNFalpha. In contrast, p38delta activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFalpha is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38gamma substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.

Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1

Thu, 08/25/2016 - 2:12pm

The cJun N-terminal kinase 1 (JNK1) is implicated in diet-induced obesity. Indeed, germline ablation of the murine Jnk1 gene prevents diet-induced obesity. Here we demonstrate that selective deficiency of JNK1 in the murine nervous system is sufficient to suppress diet-induced obesity. The failure to increase body mass is mediated, in part, by increased energy expenditure that is associated with activation of the hypothalamic-pituitary-thyroid axis. Disruption of thyroid hormone function prevents the effects of nervous system JNK1 deficiency on body mass. These data demonstrate that the hypothalamic-pituitary-thyroid axis represents an important target of metabolic signaling by JNK1.

Functional cooperation of the proapoptotic Bcl2 family proteins Bmf and Bim in vivo

Thu, 08/25/2016 - 2:12pm

Bcl2-modifying factor (Bmf) is a member of the BH3-only group of proapoptotic proteins. To test the role of Bmf in vivo, we constructed mice with a series of mutated Bmf alleles that disrupt Bmf expression, prevent Bmf phosphorylation by the c-Jun NH(2)-terminal kinase (JNK) on Ser(74), or mimic Bmf phosphorylation on Ser(74). We report that the loss of Bmf causes defects in uterovaginal development, including an imperforate vagina and hydrometrocolpos. We also show that the phosphorylation of Bmf on Ser(74) can contribute to a moderate increase in levels of Bmf activity. Studies of compound mutants with the related gene Bim demonstrated that Bim and Bmf exhibit partially redundant functions in vivo. Thus, developmental ablation of interdigital webbing on mouse paws and normal lymphocyte homeostasis require the cooperative activity of Bim and Bmf.

Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance

Thu, 08/25/2016 - 2:12pm

Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH(2)-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1(-)(/)(-) mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (M(KO)) mice exhibit improved insulin sensitivity compared with control wild-type (M(WT)) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed M(WT) mice but is suppressed only in the liver and adipose tissue of M(KO) mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.

Prevention of steatosis by hepatic JNK1

Thu, 08/25/2016 - 2:12pm

Nonalcoholic steatosis (fatty liver) is a major cause of liver dysfunction that is associated with insulin resistance and metabolic syndrome. The cJun NH(2)-terminal kinase 1 (JNK1) signaling pathway is implicated in the pathogenesis of hepatic steatosis and drugs that target JNK1 may be useful for treatment of this disease. Indeed, mice with defects in JNK1 expression in adipose tissue are protected against hepatic steatosis. Here we report that mice with specific ablation of Jnk1 in hepatocytes exhibit glucose intolerance, insulin resistance, and hepatic steatosis. JNK1 therefore serves opposing actions in liver and adipose tissue to both promote and prevent hepatic steatosis. This finding has potential implications for the design of JNK1-selective drugs for the treatment of metabolic syndrome.

Nuclear localization of p38 MAPK in response to DNA damage

Thu, 08/25/2016 - 2:12pm

p38 MAP kinase (MAPK) is activated in response to environmental stress, cytokines and DNA damage, and mediates death, cell differentiation and cell cycle checkpoints. The intracellular localization of p38 MAPK upon activation remains unclear, and may depend on the stimulus. We show here that activation of p38 MAPK by stimuli that induce DNA double strand breaks (DSBs), but not other stimuli, leads to its nuclear translocation. In addition, naturally occurring DSBs generated through V(D)J recombination in immature thymocytes also promote nuclear accumulation of p38 MAPK. Nuclear translocation of p38 MAPK does not require its catalytic activity, but is induced by a conformational change of p38 MAPK triggered by phosphorylation within the active site. The selective nuclear accumulation of p38 MAPK in response to DNA damage could be a mechanism to facilitate the phosphorylation of p38 MAPK nuclear targets for the induction of a G2/M cell cycle checkpoint and DNA repair.

Induction of hepatitis by JNK-mediated expression of TNF-alpha

Thu, 08/25/2016 - 2:12pm

The c-Jun NH(2)-terminal kinase (JNK) signaling pathway has been implicated in the development of tumor necrosis factor (TNF)-dependent hepatitis. JNK may play a critical role in hepatocytes during TNF-stimulated cell death in vivo. To test this hypothesis, we examined the phenotype of mice with compound disruption of the Jnk1 and Jnk2 genes. Mice with loss of JNK1/2 expression in hepatocytes exhibited no defects in the development of hepatitis compared with control mice, whereas mice with loss of JNK1/2 in the hematopoietic compartment exhibited a profound defect in hepatitis that was associated with markedly reduced expression of TNF-alpha. These data indicate that JNK is required for TNF-alpha expression but not for TNF-alpha-stimulated death of hepatocytes. Indeed, TNF-alpha induced similar hepatic damage in both mice with hepatocyte-specific JNK1/2 deficiency and control mice. These observations confirm a role for JNK in the development of hepatitis but identify hematopoietic cells as the site of the essential function of JNK.

Phosphorylation of Ewing's sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage

Thu, 08/25/2016 - 2:12pm

In Ewing's sarcomas, chromosomal translocations cause the N-terminal domain of the EWS (Ewing's sarcoma protein) to fuse with the DNA-binding domains of the Ets (E26 transformation-specific) family of transcription factors. Here we show that EWS and EWS-Fli1 (Friend leukaemia virus integration 1), the fusion most frequently found in Ewing's sarcomas, become phosphorylated at Thr(79) in response to either mitogens or DNA-damaging agents. The much weaker mitogen-induced phosphorylation of EWS is catalysed by the MAPKs (mitogen-activated protein kinases) ERK1 (extracellular signal-regulated kinase 1) and ERK2, whereas the much stronger phosphorylation of EWS induced by the DNA alkylating agent MMS (methyl methanesulphonate) can be catalysed by JNK (c-Jun N-terminal kinase) and at least one other protein kinase distinct from ERK1/ERK2. In contrast, the phosphorylation of EWS-Fli1 induced by MMS was largely mediated by p38alpha/p38beta MAPKs. MMS induced a much stronger phosphorylation of EWS-Fli1 than EWS in heterodimers comprising both proteins.

Regulation of the immune response by stress-activated protein kinases

Thu, 08/25/2016 - 2:12pm

Activation of immune cells to mediate an immune response is often triggered by potential 'danger' or 'stress' stimuli that the organism receives. Within the mitogen-activated protein kinases (MAPKs) family, the stress-activated protein kinase (SAPK) group was defined as group of kinases that activated by stimuli that cause cell stress. In the immune cells, SAPKs are activated by antigen receptors (B- or T-cell receptors), Toll-like receptors, cytokine receptors, and physical-chemical changes in the environment among other stimuli. The SAPKs are established to be important mediators of intracellular signaling during adaptive and innate immune responses. Here we summarize what is currently known about the role of two sub-groups of SAPKs - c-Jun NH(2)-terminal kinase and p38 MAPK-in the function of specific components of the immune system and the overall contribution to the immune response.

Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice

Thu, 08/25/2016 - 2:12pm

AIMS/HYPOTHESIS: Obesity and diabetes are associated with increased intracellular p38 mitogen-activated protein kinase (MAPK) signalling, which may promote tissue inflammation and injury. Activation of p38 MAPK can be induced by either of the immediate upstream kinases, MAP kinase kinase (MKK)3 or MKK6, and recent evidence suggests that MKK3 has non-redundant roles in the pathology attributed to p38 MAPK activation. Therefore, this study examined whether MKK3 signalling influences the development of obesity, type 2 diabetes and diabetic nephropathy.

METHODS: Wild-type and Mkk3 (also known as Map2k3) gene-deficient db/db mice were assessed for the development of obesity, type 2 diabetes and renal injury from 8 to 32 weeks of age.

RESULTS: Mkk3 (+/+) db/db and Mkk3 (-/-) db/db mice developed comparable obesity and were similar in terms of incidence and severity of type 2 diabetes. At 32 weeks, diabetic Mkk3 (+/+) db/db mice had increased kidney levels of phospho-p38 and MKK3 protein. In comparison, kidney levels of phospho-p38 in diabetic Mkk3 ( -/- ) db/db mice remained normal, despite a fourfold compensatory increase in MKK6 protein levels. The reduced levels of p38 MAPK signalling in the diabetic kidneys of Mkk3 ( -/- ) db/db mice was associated with protection against the following: declining renal function, increasing albuminuria, renal hypertrophy, podocyte loss, mesangial cell activation and glomerular fibrosis. Diabetic Mkk3 ( -/- ) db/db mice were also significantly protected from tubular injury and interstitial fibrosis, which was associated with reduced Ccl2 mRNA expression and interstitial macrophage accumulation.

CONCLUSIONS/INTERPRETATION: MKK3-p38 MAPK signalling is not required for the development of obesity or type 2 diabetes, but plays a distinct pathogenic role in the progression of diabetic nephropathy in db/db mice.

Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage

Thu, 08/25/2016 - 2:12pm

Although apoptosis triggered by ultraviolet B (UVB)-mediated activation of the c-Jun N-terminal kinase (JNK) pathway is mediated by both intrinsic and extrinsic pathways, the mechanism of initiation of JNK activation remains obscure. Here, we report the characterization of the JNK-interacting protein 3 (JIP-3) scaffolding protein as an interacting partner of Rho-associated kinase 1 (ROCK1), as determined by tandem affinity protein purification. Upon UVB-induced stress in keratinocytes, ROCK1 was activated, bound to JIP-3, and activated the JNK pathway. Moreover, phosphorylation of JIP-3 by ROCK1 was crucial for the recruitment of JNK. Inhibition of the activity of ROCK1 in keratinocytes resulted in decreased activation of the JNK pathway and thus a reduction in apoptosis. ROCK1(+/-) mice exhibited decreased UVB-mediated activation of JNK and apoptosis relative to wild-type mice. Our findings present a new molecular mechanism by which ROCK1 functions as a UVB sensor that regulates apoptosis, an important event in the prevention of skin cancer.

A genetically encoded fluorescent sensor of ERK activity

Thu, 08/25/2016 - 2:12pm

The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), optimized for signal-to-noise ratio and fluorescence lifetime imaging. EKAR selectively and reversibly reported ERK activation in HEK293 cells after epidermal growth factor stimulation. EKAR signals were correlated with ERK phosphorylation, required ERK activity, and did not report the activities of JNK or p38. EKAR reported ERK activation in the dendrites and nucleus of hippocampal pyramidal neurons in brain slices after theta-burst stimuli or trains of back-propagating action potentials. EKAR therefore permits the measurement of spatiotemporal ERK signaling dynamics in living cells, including in neuronal compartments in intact tissues.

c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/beta-catenin signaling through GSK3beta pathway

Thu, 08/25/2016 - 2:12pm

Increasing evidence shows that there is an interaction between mitogen-activated protein kinase and Wnt signaling and that their interaction plays important roles in a variety of cellular processes. However, how the two signaling interacts is not clear. In this study, we found that beta-catenin expression was strikingly increased in the intestinal normal mucosa and tumors of c-Jun N-terminal kinase (JNK) 1-deficient mice by immunohistochemical staining and that both beta-catenin expression and transcriptional activity were significantly upregulated in JNK1-deficient mouse embryonic fibroblasts. However, active JNK1 significantly inhibited beta-catenin expression and suppressed beta-catenin-mediated transcriptional activity by enhancing glycogen synthase kinase 3beta (GSK3beta) activity. But beta-catenin inhibition was significantly reduced by GSK3beta RNA interference or GSK3beta inhibitor lithium chloride and proteasome inhibitor MG132. Further, mutant beta-catenin at the phosphorylation sites of Ser33 and Ser37 by GSK3beta was resistant to activated JNK1-induced beta-catenin degradation. Moreover, the physical interaction between JNK1 and beta-catenin was detected by immunoprecipitation, and their colocalization was seen in cellular nuclei and cytoplasm. Taken together, our data provide direct evidence that JNK1 interacts with and negatively regulates beta-catenin signaling through GSK3beta pathway and that the beta-catenin alteration is probably responsible for the intestinal tumor formation in JNK1-deficient mice.

Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation

Thu, 08/25/2016 - 2:11pm

Glycogen synthase kinase 3beta (GSK3beta) is involved in metabolism, neurodegeneration, and cancer. Inhibition of GSK3beta activity is the primary mechanism that regulates this widely expressed active kinase. Although the protein kinase Akt inhibits GSK3beta by phosphorylation at the N terminus, preventing Akt-mediated phosphorylation does not affect the cell-survival pathway activated through the GSK3beta substrate beta-catenin. Here, we show that p38 mitogen-activated protein kinase (MAPK) also inactivates GSK3beta by direct phosphorylation at its C terminus, and this inactivation can lead to an accumulation of beta-catenin. p38 MAPK-mediated phosphorylation of GSK3beta occurs primarily in the brain and thymocytes. Activation of beta-catenin-mediated signaling through GSK3beta inhibition provides a potential mechanism for p38 MAPK-mediated survival in specific tissues.

Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1

Thu, 08/25/2016 - 2:11pm

Transforming growth factor beta1 (TGF-beta1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-beta1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-beta1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1-/- or JNK2-/- mice were comparatively evaluated for their ability to undergo EMT in response to TGF-beta1. Wild-type MTEC exposed to TGF-beta1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-beta1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2-/- MTEC underwent EMT in response to TGF-beta1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1-/- MTEC in response to TGF-beta1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-beta1-modulated genes, including regulators of EMT in JNK1-/- MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.

Multisite phosphorylation regulates Bim stability and apoptotic activity

Thu, 08/25/2016 - 2:11pm

The proapoptotic BH3-only protein Bim is established to be an important mediator of signaling pathways that induce cell death. Multisite phosphorylation of Bim by several members of the MAP kinase group is implicated as a regulatory mechanism that controls the apoptotic activity of Bim. To test the role of Bim phosphorylation in vivo, we constructed mice with a series of mutant alleles that express phosphorylation-defective Bim proteins. We show that mutation of the phosphorylation site Thr-112 causes decreased binding of Bim to the antiapoptotic protein Bcl2 and can increase cell survival. In contrast, mutation of the phosphorylation sites Ser-55, Ser-65, and Ser-73 can cause increased apoptosis because of reduced proteasomal degradation of Bim. Together, these data indicate that phosphorylation can regulate Bim by multiple mechanisms and that the phosphorylation of Bim on different sites can contribute to the sensitivity of cellular apoptotic responses.

MKK3 signalling plays an essential role in leukocyte-mediated pancreatic injury in the multiple low-dose streptozotocin model

Thu, 08/25/2016 - 2:11pm

In vitro studies have implicated activation of the p38 mitogen-activated protein kinase (MAPK) signalling pathway in cytokine-mediated pancreatic beta-cell injury. Activation of the p38 MAPK occurs through two different upstream kinases, mitogen-activated protein kinase kinase 3 (MKK3) and MKK6. This study examined the role of MKK3 signalling in an in vivo model of cytokine-dependent pancreatic injury induced by multiple low doses of streptozotocin (MLD-STZ). Groups of wild-type (WT) or Mkk3-/- C57BL/6J mice received 5 daily injections of STZ (40 mg/kg) and were killed on day 5, week 2 or week 4. MLD-STZ in WT mice exhibited two distinct phases of pancreatic damage: islet cell apoptosis (immunostaining for cleaved caspase-3) on day 5 in the absence of leukocyte infiltration, and this was followed by islet inflammation (leukocyte infiltration and cytokine production) and further islet cell apoptosis on day 14 resulting in a loss of insulin-producing beta-cells and an 80% incidence of hyperglycaemia. Mkk3-/- mice were not protected from the initial phase of STZ-induced islet cell apoptosis day 5. However, Mkk3-/- mice were completely protected from the induction of hyperglycaemia. This was attributed to inhibition of leukocyte infiltration, production of pro-inflammatory cytokines and islet cell apoptosis at day 14 of MLD-STZ. In vitro studies showed that cultured islets from Mkk3-/- and WT mice are equally susceptible to STZ and cytokine-induced apoptosis. In conclusion, MKK3 signalling plays an essential role in the development of islet inflammation leading to destruction of beta-cells and hyperglycaemia in MLD-STZ-induced pancreatic injury.

Targeting dendritic cell signaling to regulate the response to immunization

Thu, 08/25/2016 - 2:11pm

Dendritic cells (DCs) are key regulators of the immune system; they capture antigens and then can either stimulate an immune response or induce tolerance. Our aim was to activate individual DC signaling pathways to regulate the immune response. We therefore expressed constitutive activators of mitogen-activated protein kinase (MAPK) pathways or the interferon pathway, together with tumor antigens, using lentivectors. Triggering of p38 activated DCs substantially enhanced the antitumor immune response and prolonged survival of tumor-bearing mice. Activation of extracellular signal-regulated kinase (ERK) increased TGF-beta expression while expression of a constitutively activated interferon regulatory factor-3 (IRF3) stimulated IL-10 secretion by DCs. ERK and IRF3 suppressed the immune response and stimulated expansion of regulatory T cells. These results provide a toolkit to regulate immune responses to viral vector or DC immunization; vaccine responses to foreign or tumor antigens can be enhanced and harmful responses to self-antigens or introduced transgenes can be reduced.

Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex

Thu, 08/25/2016 - 2:11pm

The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.