eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 19 min ago

Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis

Fri, 04/22/2016 - 2:25pm

Hair follicle morphogenesis requires precisely controlled reciprocal communications, including hedgehog (Hh) signaling. Activation of the Hh signaling pathway relies on the primary cilium. Disrupting ciliogenesis results in hair follicle morphogenesis defects due to attenuated Hh signaling; however, the loss of cilia makes it impossible to determine whether hair follicle phenotypes in these cilia mutants are caused by the loss of cilia, disruption of Hh signaling, or a combination of these events. In this study, we characterized the function of Ift27, which encodes a subunit of intraflagellar transport (IFT) complex B. Hair follicle morphogenesis of Ift27-null mice was severely impaired, reminiscent of phenotypes observed in cilia and Hh mutants. Furthermore, the Hh signaling pathway was attenuated in Ift27 mutants, which was in association with abnormal ciliary trafficking of SMO and GLI2, and impaired processing of Gli transcription factors; however, formation of the ciliary axoneme was unaffected. The ciliary localization of IFT25 (HSPB11), the binding partner of IFT27, was disrupted in Ift27 mutant cells, and Ift25-null mice displayed hair follicle phenotypes similar to those of Ift27 mutants. These data suggest that Ift27 and Ift25 operate in a genetically and functionally dependent manner during hair follicle morphogenesis. This study suggests that the molecular trafficking machineries underlying ciliogenesis and Hh signaling can be segregated, thereby providing important insights into new avenues of inhibiting Hh signaling, which might be adopted in the development of targeted therapies for Hh-dependent cancers, such as basal cell carcinoma.

Global genetic analysis in mice unveils central role for cilia in congenital heart disease

Fri, 04/22/2016 - 2:25pm

Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and > 8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.

Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells

Fri, 04/22/2016 - 2:25pm

Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate.

POS-1 Promotes Endo-mesoderm Development by Inhibiting the Cytoplasmic Polyadenylation of neg-1 mRNA

Fri, 04/22/2016 - 2:24pm

The regulation of mRNA translation is of fundamental importance in biological mechanisms ranging from embryonic axis specification to the formation of long-term memory. POS-1 is one of several CCCH zinc-finger RNA-binding proteins that regulate cell fate specification during C. elegans embryogenesis. Paradoxically, pos-1 mutants exhibit striking defects in endo-mesoderm development but have wild-type distributions of SKN-1, a key determinant of endo-mesoderm fates. RNAi screens for pos-1 suppressors identified genes encoding the cytoplasmic poly(A)-polymerase homolog GLD-2, the Bicaudal-C homolog GLD-3, and the protein NEG-1. We show that NEG-1 localizes in anterior nuclei, where it negatively regulates endo-mesoderm fates. In posterior cells, POS-1 binds the neg-1 3' UTR to oppose GLD-2 and GLD-3 activities that promote NEG-1 expression and cytoplasmic lengthening of the neg-1 mRNA poly(A) tail. Our findings uncover an intricate series of post-transcriptional regulatory interactions that, together, achieve precise spatial expression of endo-mesoderm fates in C. elegans embryos.

s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways

Fri, 04/22/2016 - 2:24pm

s-adenosylmethionine (SAM) is the sole methyl donor modifying histones, nucleic acids, and phospholipids. Its fluctuation affects hepatic phosphatidylcholine (PC) synthesis or may be linked to variations in DNA or histone methylation. Physiologically, low SAM is associated with lipid accumulation, tissue injury, and immune responses in fatty liver disease. However, molecular connections among SAM limitation, methyltransferases, and disease-associated phenotypes are unclear. We find that low SAM can activate or attenuate Caenorhabditis elegans immune responses. Immune pathways are stimulated downstream of PC production on a non-pathogenic diet. In contrast, distinct SAM-dependent mechanisms limit survival on pathogenic Pseudomonas aeruginosa. C. elegans undertakes a broad transcriptional response to pathogens and we find that low SAM restricts H3K4me3 at Pseudomonas-responsive promoters, limiting their expression. Furthermore, this response depends on the H3K4 methyltransferase set-16/MLL. Thus, our studies provide molecular links between SAM and innate immune functions and suggest that SAM depletion may limit stress-induced gene expression.

HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation

Fri, 04/22/2016 - 2:24pm

HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.

A PH Domain with Dual Phospholipid Binding Sites Regulates the ARF GAP, ASAP1

Fri, 04/22/2016 - 2:23pm

In this issue of Structure, Jian et al. (2015) report the crystal structures of the apo- and dibutyryl-PI(4,5)P2 bound forms of the PH domain from the ARF GAP, ASAP1. This PH domain has two anionic phospholipid binding sites proposed to work in concert to regulate ASAP1 GAP activity.

Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed

Fri, 04/22/2016 - 2:23pm

Adipose tissue development is poorly understood. Here we use a lineage-tracing strategy optimal for adipocytes to provide evidence that Myf5 precursors are not the exclusive source of brown adipocytes and contribute more to the mature white and brite adipocyte populations than previously thought. Moreover, Myf5-lineage distribution in adipose tissue changes in response to modifiable and non-modifiable factors. We also find that the Pax3 lineage largely overlaps with the Myf5 lineage in brown fat and subcutaneous white fat, but exhibits gender-linked divergence in visceral white fat while the MyoD1 lineage does not give rise to any adipocytes. Finally, by deleting insulin receptor beta in the Myf5 lineage, we provide in vivo evidence that the insulin receptor is essential for adipogenesis and that adipocyte lineages have plasticity. These data establish a conceptual framework for adipose tissue development and could explain body fat patterning variations in healthy and lipodystrophic or obese humans.

Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis

Fri, 04/22/2016 - 2:23pm

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFkappaB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.

Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre

Fri, 04/22/2016 - 2:23pm

The origins of individual fat depots are not well understood, and thus, the availability of tools useful for studying depot-specific adipose tissue development and function is limited. Cre drivers that selectively target only brown adipocyte, subcutaneous white adipocyte, or visceral white adipocyte precursors would have significant value because they could be used to selectively study individual depots without impacting the adipocyte precursors or intrinsic metabolic properties of the other depots. Here, we show that the majority of the precursor and mature subcutaneous white adipocytes in adult C57Bl/6 mice are labeled by Prx1-Cre. In sharp contrast, few to no brown adipocytes or visceral white adipocytes are marked by Prx1-Cre. This suggests that Prx1-Cre-mediated recombination may be useful for making depot-restricted genetic manipulations in subcutaneous white adipocyte precursor cells, particularly when targeting genes with fat-specific functions.

Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice

Fri, 04/22/2016 - 2:22pm

Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rg(null) (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.

Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion

Fri, 04/22/2016 - 2:22pm

Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity.

The Mother Centriole Appendage Protein Cenexin Modulates Lumen Formation through Spindle Orientation

Fri, 04/22/2016 - 2:22pm

Establishing apical-basal polarity is instrumental in the functional shaping of a solitary lumen within an acinus. By exploiting micropatterned slides, wound healing assays, and three-dimensional culture systems, we identified a mother centriole subdistal appendage protein, cenexin, as a critical player in symmetric lumen expansion through the control of microtubule organization. In this regard, cenexin was required for both centrosome positioning in interphase cells and proper spindle orientation during mitosis. In contrast, the essential mother centriole distal appendage protein CEP164 did not play a role in either process, demonstrating the specificity of subdistal appendages for these events. Importantly, upon closer examination we found that cenexin depletion decreased astral microtubule length, disrupted astral microtubule minus-end organization, and increased levels of the polarity protein NuMA at the cell cortex. Interestingly, spindle misorientation and NuMA mislocalization were reversed by treatment with a low dose of the microtubule-stabilizing agent paclitaxel. Taken together, these results suggest that cenexin modulates microtubule organization and stability to mediate spindle orientation.

Genetic link between renal birth defects and congenital heart disease

Fri, 04/22/2016 - 2:21pm

Structural birth defects in the kidney and urinary tract are observed in 0.5% of live births and are a major cause of end-stage renal disease, but their genetic aetiology is not well understood. Here we analyse 135 lines of mice identified in large-scale mouse mutagenesis screen and show that 29% of mutations causing congenital heart disease (CHD) also cause renal anomalies. The renal anomalies included duplex and multiplex kidneys, renal agenesis, hydronephrosis and cystic kidney disease. To assess the clinical relevance of these findings, we examined patients with CHD and observed a 30% co-occurrence of renal anomalies of a similar spectrum. Together, these findings demonstrate a common shared genetic aetiology for CHD and renal anomalies, indicating that CHD patients are at increased risk for complications from renal anomalies. This collection of mutant mouse models provides a resource for further studies to elucidate the developmental link between renal anomalies and CHD.

Comparison of RNA isolation and associated methods for extracellular RNA detection by high-throughput quantitative polymerase chain reaction

Fri, 04/22/2016 - 2:21pm

MicroRNAs (miRNAs) are small noncoding RNA molecules that function in RNA silencing and posttranscriptional regulation of gene expression. miRNAs in biofluids are being used for clinical diagnosis as well as disease prediction. Efficient and reproducible isolation methods are crucial for extracellular RNA detection. To determine the best methodologies for miRNA detection from plasma, the performance of four RNA extraction kits, including an in-house kit, were determined with miScript miRNA assay technology; all were measured using a high-throughput quantitative polymerase chain reaction (qPCR) platform (BioMark System) with 90 human miRNA assays. In addition, the performances of complementary DNA (cDNA) and preamplification kits for TaqMan miRNA assays and miScript miRNA assays were compared using the same 90 miRNAs on the BioMark System. There were significant quantification cycle (Cq) value differences for the detection of miRNA targets between isolation kits. cDNA, preamplification, and qPCR performances were also varied. In summary, this study demonstrates differences among RNA isolation methods as measured by reverse transcription (RT)-qPCR. Importantly, differences were also noted in cDNA and preamplification performance using TaqMan and miScript. The in-house kit performed better than the other three kits. These findings demonstrate significant variability between isolation and detection methods for low-abundant miRNA detection from biofluids.

Assessment of and Response to Data Needs of Clinical and Translational Science Researchers and Beyond

Fri, 04/22/2016 - 10:36am

Objective and Setting: As universities and libraries grapple with data management and “big data,” the need for data management solutions across disciplines is particularly relevant in clinical and translational science (CTS) research, which is designed to traverse disciplinary and institutional boundaries. At the University of Florida Health Science Center Library, a team of librarians undertook an assessment of the research data management needs of CTS researchers, including an online assessment and follow-up one-on-one interviews.

Design and Methods: The 20-question online assessment was distributed to all investigators affiliated with UF’s Clinical and Translational Science Institute (CTSI) and 59 investigators responded. Follow-up in-depth interviews were conducted with nine faculty and staff members.

Results: Results indicate that UF’s CTS researchers have diverse data management needs that are often specific to their discipline or current research project and span the data lifecycle. A common theme in responses was the need for consistent data management training, particularly for graduate students; this led to localized training within the Health Science Center and CTSI, as well as campus-wide training. Another campus-wide outcome was the creation of an action-oriented Data Management/Curation Task Force, led by the libraries and with participation from Research Computing and the Office of Research.

Conclusions: Initiating conversations with affected stakeholders and campus leadership about best practices in data management and implications for institutional policy shows the library’s proactive leadership and furthers our goal to provide concrete guidance to our users in this area.

Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs

Tue, 04/19/2016 - 4:47pm

BACKGROUND: Recent advances in transcriptome sequencing have enabled the discovery of thousands of long non-coding RNAs (lncRNAs) across many species. Though several lncRNAs have been shown to play important roles in diverse biological processes, the functions and mechanisms of most lncRNAs remain unknown. Two significant obstacles lie between transcriptome sequencing and functional characterization of lncRNAs: identifying truly non-coding genes from de novo reconstructed transcriptomes, and prioritizing the hundreds of resulting putative lncRNAs for downstream experimental interrogation.

RESULTS: We present slncky, a lncRNA discovery tool that produces a high-quality set of lncRNAs from RNA-sequencing data and further uses evolutionary constraint to prioritize lncRNAs that are likely to be functionally important. Our automated filtering pipeline is comparable to manual curation efforts and more sensitive than previously published computational approaches. Furthermore, we developed a sensitive alignment pipeline for aligning lncRNA loci and propose new evolutionary metrics relevant for analyzing sequence and transcript evolution. Our analysis reveals that evolutionary selection acts in several distinct patterns, and uncovers two notable classes of intergenic lncRNAs: one showing strong purifying selection on RNA sequence and another where constraint is restricted to the regulation but not the sequence of the transcript.

CONCLUSION: Our results highlight that lncRNAs are not a homogenous class of molecules but rather a mixture of multiple functional classes with distinct biological mechanism and/or roles. Our novel comparative methods for lncRNAs reveals 233 constrained lncRNAs out of tens of thousands of currently annotated transcripts, which we make available through the slncky Evolution Browser.

The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans

Tue, 04/19/2016 - 4:46pm

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and are essential for fertility in diverse organisms. An interesting feature of piRNAs is that, while piRNA lengths are stereotypical within a species, they can differ widely between species. For example, piRNAs are mainly 29 and 30 nucleotides in humans, 24 to 30 nucleotides in D. melanogaster, and uniformly 21 nucleotides in C. elegans. However, how piRNA length is determined and whether length impacts function remains unknown. Here, we show that C. elegans deficient for PARN-1, a conserved RNase, accumulate untrimmed piRNAs with 3' extensions. Surprisingly, these longer piRNAs are stable and associate with the Piwi protein PRG-1 but fail to robustly recruit downstream silencing factors. Our findings identify PARN-1 as a key regulator of piRNA length in C. elegans and suggest that length is regulated to promote efficient transcriptome surveillance.

Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo

Tue, 04/19/2016 - 4:46pm

The combination of Cas9, guide RNA and repair template DNA can induce precise gene editing and the correction of genetic diseases in adult mammals. However, clinical implementation of this technology requires safe and effective delivery of all of these components into the nuclei of the target tissue. Here, we combine lipid nanoparticle-mediated delivery of Cas9 mRNA with adeno-associated viruses encoding a sgRNA and a repair template to induce repair of a disease gene in adult animals. We applied our delivery strategy to a mouse model of human hereditary tyrosinemia and show that the treatment generated fumarylacetoacetate hydrolase (Fah)-positive hepatocytes by correcting the causative Fah-splicing mutation. Treatment rescued disease symptoms such as weight loss and liver damage. The efficiency of correction was >6% of hepatocytes after a single application, suggesting potential utility of Cas9-based therapeutic genome editing for a range of diseases.

Complying with the NSF’s New Public Access Policy and Depositing a Manuscript in NSF-PAR

Tue, 04/19/2016 - 11:18am

In 2016 the National Science Foundation (NSF) rolled out its new online public access repository, NSF-PAR for investigators funded by the NSF to deposit their manuscripts to comply with its new Public Access Policy. The NSF’s policy and its new publications repository differ in several key ways from the National Institutes of Health’s (NIH) public access policy and PMC, particularly in terms of requirements for compliance and procedures for deposit. While NIH grants may make up the majority of biomedical institutions’ research funds, the NSF is also an important source of biomedical funding, especially for career awards, research training grants, and translational research. In this webinar we will walk participants through the requirements for compliance and the process for deposit and share insights provided by the NSF Policy Office.