Syndicate content
Recent documents in eScholarship@UMMS
Updated: 1 hour 25 min ago

Targeting the arginine phosphatase YwlE with a catalytic redox-based inhibitor.

Mon, 06/15/2015 - 12:00pm

Protein phosphatases are critical regulators of cellular signaling in both eukaryotes and prokaryotes. The majority of protein phosphatases dephosphorylate phosphoserine/phosphothreonine or phosphotyrosine residues. Recently, however, YwlE, a member of the low-molecular weight protein tyrosine phosphatase (LMW-PTP) family, was shown to efficiently target phosphoarginine. YwlE shares several sequence motifs with this family including the C(X)4 CR(S/T) motif that is crucial for catalysis and redox regulation of the enzyme. Herein we confirm that Cys9 and Cys14 play important roles in YwlE catalysis and regulation. On the basis of these observations, we designed and synthesized a YwlE inhibitor, denoted cyc-SeCN-amidine, that irreversibly inhibits YwlE (kinact/KI = 310 M(-1) min(-1)) by inducing disulfide bond formation between the two active site cysteine residues. Interestingly, inactivation appears to be catalytic, since the compound is neither destroyed nor altered after enzyme inhibition. Although the exact mechanism of disulfide induction remains elusive, we propose several potential mechanisms accounting for the cyc-SeCN-amidine mediated inhibition of YwlE. These findings could stimulate the design of similar selenium-based compounds targeting other redox-sensitive enzymes.

Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity.

Mon, 06/15/2015 - 12:00pm

Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.

Chemical and biological methods to detect post-translational modifications of arginine.

Mon, 06/15/2015 - 12:00pm

Post-translational modifications (PTMs) of protein embedded arginines are increasingly being recognized as playing an important role in both prokaryotic and eukaryotic biology, and it is now clear that these PTMs modulate a number of cellular processes including DNA binding, gene transcription, protein-protein interactions, immune system activation, and proteolysis. There are currently four known enzymatic PTMs of arginine (i.e., citrullination, methylation, phosphorylation, and ADP-ribosylation), and two non-enzymatic PTMs [i.e., carbonylation, advanced glycation end-products (AGEs)]. Enzymatic modification of arginine is tightly controlled during normal cellular function, and can be drastically altered in response to various second messengers and in different disease states. Non-enzymatic arginine modifications are associated with a loss of metabolite regulation during normal human aging. This abnormally large number of modifications to a single amino acid creates a diverse set of structural perturbations that can lead to altered biological responses. While the biological role of methylation has been the most extensively characterized of the arginine PTMs, recent advances have shown that the once obscure modification known as citrullination is involved in the onset and progression of inflammatory diseases and cancer. This review will highlight the reported arginine PTMs and their methods of detection, with a focus on new chemical methods to detect protein citrullination.

(c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 133-143, 2014.

Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation.

Mon, 06/15/2015 - 12:00pm

Protein citrullination is just one of more than 200 known PTMs. This modification, catalyzed by the protein arginine deiminases (PADs 1-4 and PAD6 in humans), converts the positively charged guanidinium group of an arginine residue into a neutral ureido-group. Given the strong links between dysregulated PAD activity and human disease, we initiated a program to develop PAD inhibitors as potential therapeutics for these and other diseases in which the PADs are thought to play a role. Streptonigrin which possesses both anti-tumor and anti-bacterial activity was later identified as a highly potent PAD4 inhibitor. In an effort to understand why streptonigrin is such a potent and selective PAD4 inhibitor, we explored its structure-activity relationships by examining the inhibitory effects of several analogues that mimic the A, B, C, and/or D rings of streptonigrin. We report the identification of the 7-amino-quinoline-5,8-dione core of streptonigrin as a highly potent pharmacophore that acts as a pan-PAD inhibitor.

Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation

Mon, 06/15/2015 - 12:00pm

Enzymatic transfer of the AMP portion of ATP to substrate proteins has recently been described as an essential mechanism of bacterial infection for several pathogens. The first AMPylator to be discovered, VopS from Vibrio parahemolyticus, catalyzes the transfer of AMP onto the host GTPases Cdc42 and Rac1. Modification of these proteins disrupts downstream signaling events, contributing to cell rounding and apoptosis, and recent studies have suggested that blocking AMPylation may be an effective route to stop infection. To date, however, no small molecule inhibitors have been discovered for any of the AMPylators. Therefore, we developed a fluorescence-polarization-based high-throughput screening assay and used it to discover the first inhibitors of protein AMPylation. Herein we report the discovery of the first small molecule VopS inhibitors (e.g., calmidazolium, GW7647, and MK886) with Ki's ranging from 6 to 50 muM and upward of 30-fold selectivity versus HYPE, the only known human AMPylator.

Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

Mon, 06/15/2015 - 12:00pm

RATIONALE: Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-alpha-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation.

OBJECTIVE: To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis.

METHODS AND RESULTS: Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-alpha in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-alpha expression.

CONCLUSIONS: Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

Using unnatural amino acid mutagenesis to probe the regulation of PRMT1.

Mon, 06/15/2015 - 12:00pm

Protein arginine methyltransferase 1 (PRMT1)-dependent methylation contributes to the onset and progression of numerous diseases (e.g., cancer, heart disease, ALS); however, the regulatory mechanisms that control PRMT1 activity are relatively unexplored. We therefore set out to decipher how phosphorylation regulates PRMT1 activity. Curated mass spectrometry data identified Tyr291, a residue adjacent to the conserved THW loop, as being phosphorylated. Natural and unnatural amino acid mutagenesis, including the incorporation of p-carboxymethyl-l-phenylalanine (pCmF) as a phosphotyrosine mimic, were used to show that Tyr291 phosphorylation alters the substrate specificity of PRMT1. Additionally, p-benzoyl-l-phenylalanine (pBpF) was incorporated at the Tyr291 position, and cross-linking experiments with K562 cell extracts identified several proteins (e.g., hnRNPA1 and hnRNP H3) that bind specifically to this site. Moreover, we also demonstrate that Tyr291 phosphorylation impairs PRMT1's ability to bind and methylate both proteins. In total, these studies demonstrate that Tyr291 phosphorylation alters both PRMT1 substrate specificity and protein-protein interactions.

A FluoPol-ABPP PAD2 high-throughput screen identifies the first calcium site inhibitor targeting the PADs.

Mon, 06/15/2015 - 12:00pm

The protein arginine deiminases (PADs) catalyze the post-translational hydrolysis of peptidyl-arginine to form peptidyl-citrulline in a process termed deimination or citrullination. PADs likely play a role in the progression of a range of disease states because dysregulated PAD activity is observed in a host of inflammatory diseases and cancer. For example, recent studies have shown that PAD2 activates ERalpha target gene expression in breast cancer cells by citrullinating histone H3 at ER target promoters. To date, all known PAD inhibitors bind directly to the enzyme active site. PADs, however, also require calcium ions to drive a conformational change between the inactive apo-state and the fully active calcium bound holoenzyme, suggesting that it would be possible to identify inhibitors that bind the apoenzyme and prevent this conformational change. As such, we set out to develop a screen that can identify PAD2 inhibitors that bind to either the apo or calcium bound form of PAD2. Herein, we provide definitive proof of concept for this approach and report the first PAD inhibitor, ruthenium red (Ki of 17 muM), to preferentially bind the apoenzyme.

Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway.

Mon, 06/15/2015 - 12:00pm

PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.

Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity

Mon, 06/15/2015 - 12:00pm

Autoantibodies to nuclear antigens arise in human autoimmune diseases, but a unifying pathogenetic mechanism remains elusive. Recently we reported that exposure of neutrophils to inflammatory conditions induces the citrullination of core histones by peptidylarginine deiminase 4 (PAD4) and that patients with autoimmune disorders produce autoantibodies that recognize such citrullinated histones. Here we identify histone H1 as an additional substrate of PAD4, localize H1 within neutrophil extracellular traps, and detect autoantibodies to citrullinated H1 in 6% of sera from patients with systemic lupus erythematosus and Sjogren's syndrome. No preference for deiminated H1 was observed in healthy control sera and sera from patients with scleroderma or rheumatoid arthritis. We map binding to the winged helix of H1 and determine that citrulline 53 represents a key determinant of the autoantibody epitope. In addition, we quantitate RNA for H1 histone subtypes in mature human neutrophils and identify citrulline residues by liquid chromatography and tandem mass spectrometry. Our results indicate that deimination of linker histones generates new autoantibody epitopes with enhanced potential for stimulating autoreactive human B cells.-Dwivedi, N., Neeli, I., Schall, N., Wan, H., Desiderio, D. M., Csernok, E., Thompson, P. R., Dali, H., Briand, J.-P., Muller, S., Radic, M. Deimination of linker histones links neutrophil extracellular trap release with autoantibodies in systemic autoimmunity.

Mechanistic studies of protein arginine deiminase 2: evidence for a substrate-assisted mechanism

Mon, 06/15/2015 - 12:00pm

Citrullination, which is catalyzed by protein arginine deiminases (PADs 1-4 and 6), is a post-translational modification (PTM) that effectively neutralizes the positive charge of a guanidinium group by its replacement with a neutral urea. Given the sequence similarity of PAD2 across mammalian species and the genomic organization of the PAD2 gene, PAD2 is predicted to be the ancestral homologue of the PADs. Although PAD2 has long been known to play a role in myelination, it has only recently been linked to other cellular processes, including gene transcription and macrophage extracellular trap formation. For example, PAD2 deiminates histone H3 at R26, and this PTM leads to the increased transcription of more than 200 genes under the control of the estrogen receptor. Given that our understanding of PAD2 biology remains incomplete, we initiated mechanistic studies on this enzyme to aid the development of PAD2-specific inhibitors. Herein, we report that the substrate specificity and calcium dependence of PAD2 are similar to those of PADs 1, 3, and 4. However, unlike those isozymes, PAD2 appears to use a substrate-assisted mechanism of catalysis in which the positively charged substrate guanidinium depresses the pKa of the nucleophilic cysteine. By contrast, PADs 1, 3, and 4 use a reverse-protonation mechanism. These mechanistic differences will aid the development of isozyme-specific inhibitors.

Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates.

Mon, 06/15/2015 - 12:00pm

Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca(+2) -regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFalpha, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage. Ltd on behalf of International Society for Neurochemistry.

A novel role for protein arginine deiminase 4 in pluripotency: the emerging role of citrullinated histone H1 in cellular programming.

Mon, 06/15/2015 - 12:00pm

Histone post-translational modifications (PTMs) alter the chromatin architecture, generating "open" and "closed" states, and these structural changes can modulate gene expression under specific cellular conditions. While methylation and acetylation are the best-characterized histone PTMs, citrullination by the protein arginine deiminases (PADs) represents another important player in this process. In addition to "fine tuning" chromatin structure at specific loci, histone citrullination can also promote rapid global chromatin decondensation during the formation of extracellular traps (ETs) in immune cells. Recent studies now show that PAD4-mediated citrullination of histone H1 at promoter elements can also promote localized chromatin decondensation in stem cells, thus regulating the pluripotent state. These observations suggest that PAD-mediated histone deimination profoundly affects chromatin structure, possibly above and beyond that of other PTMs. Additionally, these recent findings further enhance our understanding of PAD biology and the important contributions that these enzymes play in development, health, and disease.

Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice.

Mon, 06/15/2015 - 12:00pm

OBJECTIVES: An imbalance between neutrophil extracellular trap (NET) formation and degradation has been described in systemic lupus erythematosus (SLE), potentially contributing to autoantigen externalisation, type I interferon synthesis and endothelial damage. We have demonstrated that peptidylarginine deiminase (PAD) inhibition reduces NET formation and protects against lupus-related vascular damage in the New Zealand Mixed model of lupus. However, another strategy for inhibiting NETs-knockout of NOX2-accelerates lupus in a different murine model, MRL/lpr. Here, we test the effects of PAD inhibition on MRL/lpr mice in order to clarify whether some NET inhibitory pathways may be consistently therapeutic across models of SLE.

METHODS: NET formation and autoantibodies to NETs were characterised in lupus-prone MRL/lpr mice. MRL/lpr mice were also treated with two different PAD inhibitors, Cl-amidine and the newly described BB-Cl-amidine. NET formation, endothelial function, interferon signature, nephritis and skin disease were examined in treated mice.

RESULTS: Neutrophils from MRL/lpr mice demonstrate accelerated NET formation compared with controls. MRL/lpr mice also form autoantibodies to NETs and have evidence of endothelial dysfunction. PAD inhibition markedly improves endothelial function, while downregulating the expression of type I interferon-regulated genes. PAD inhibition also reduces proteinuria and immune complex deposition in the kidneys, while protecting against skin disease.

CONCLUSIONS: PAD inhibition reduces NET formation, while protecting against lupus-related damage to the vasculature, kidneys and skin in various lupus models. The strategy by which NETs are inhibited will have to be carefully considered if human studies are to be undertaken.

Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus.

Mon, 06/15/2015 - 12:00pm

OBJECTIVE: Oxidative stress and oxidized high-density lipoprotein (HDL) are implicated as risk factors for cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Yet, how HDL is oxidized and rendered dysfunctional in SLE remains unclear. Neutrophil extracellular traps (NETs), the levels of which are elevated in lupus, possess oxidant-generating enzymes, including myeloperoxidase (MPO), NADPH oxidase (NOX), and nitric oxide synthase (NOS). We hypothesized that NETs mediate HDL oxidation, impairing cholesterol efflux capacity (CEC).

METHODS: Plasma MPO levels and CEC activity were examined in controls and lupus patients, and 3-chlorotyrosine (MPO specific) and 3-nitrotyrosine (derived from reactive nitrogen species) were quantified in human HDL. Multivariable linear models were used to estimate and test differences between groups. HDL was exposed to NETs from control and lupus neutrophils in the presence or absence of MPO, NOX, NOS inhibitors, and chloroquine (CQ). Murine HDL oxidation was quantified after NET inhibition in vivo.

RESULTS: SLE patients displayed higher MPO levels and diminished CEC compared to controls. SLE HDL had higher 3-nitrotyrosine and 3-chlorotyrosine content than control HDL, with site-specific oxidation signatures on apolipoprotein A-I. Experiments with human and murine NETs confirmed that chlorination was mediated by MPO and NOX, and nitration by NOS and NOX. Mice with lupus treated with the NET inhibitor Cl-amidine displayed significantly decreased HDL oxidation. CQ inhibited NET formation in vitro.

CONCLUSION: Active NOS, NOX, and MPO within NETs significantly modify HDL, rendering the lipoprotein proatherogenic. Since NET formation is enhanced in SLE, these findings support a novel role for NET-derived lipoprotein oxidation in SLE-associated CVD and identify additional proatherogenic roles of neutrophils and putative protective roles of antimalarials in autoimmunity. domain in the USA.

Protein arginine methyltransferase 5 catalyzes substrate dimethylation in a distributive fashion.

Mon, 06/15/2015 - 12:00pm

Protein arginine methyltransferase 5 (PRMT5) is a histone-modifying enzyme whose activity is aberrantly upregulated in various cancers and thereby contributes to a progrowth phenotype. Indeed, knockdown of PRMT5 leads to growth arrest and apoptosis, suggesting that inhibitors targeting this enzyme may have therapeutic utility in oncology. To aid the development of inhibitors targeting PRMT5, we initiated mechanistic studies geared to understand how PRMT5 selectively catalyzes the symmetric dimethylation of its substrates. Toward that end, we characterized the regiospecificity and processivity of bacterially expressed Caenorhabditis elegans PRMT5 (cPRMT5), insect cell-expressed human PRMT5 (hPRMT5), and human PRMT5 complexed with methylosome protein 50 (MEP50), i.e., the PRMT5.MEP50 complex. Our studies confirm that arginine 3 is the only site of methylation in both histone H4 and H4 tail peptide analogues and that sites distal to the site of methylation promote the efficient symmetric dimethylation of PRMT5 substrates by increasing the affinity of the monomethylated substrate for the enzyme. Additionally, we show for the first time that both cPRMT5 and the hPRMT5.MEP50 complex catalyze substrate dimethylation in a distributive manner, which is assisted by long-range interactions. Finally, our data confirm that MEP50 plays a key role in substrate recognition and activates PRMT5 activity by increasing its affinity for protein substrates. In total, our results suggest that it may be possible to allosterically inhibit PRMT5 by targeting binding pockets outside the active site.

Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation.

Mon, 06/15/2015 - 12:00pm

Human proteins are subjected to more than 200 known post-translational modifications (PTMs) (e.g., phosphorylation, glycosylation, ubiquitination, S-nitrosylation, methylation, N-acetylation, and citrullination) and these PTMs can alter protein structure and function with consequent effects on the multitude of pathways necessary for maintaining the physiological homeostasis. When dysregulated, however, the enzymes that catalyze these PTMs can impact the genesis of countless diseases. In this review, we will focus on protein citrullination, a PTM catalyzed by the Protein Arginine Deiminase (PAD) family of enzymes. Specifically, we will describe the roles of the PADs in both normal human physiology and disease. The development of PAD inhibitors and their efficacy in a variety of autoimmune disorders and cancer will also be discussed.

Design, synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase inhibitors.

Mon, 06/15/2015 - 12:00pm

Protein arginine deiminases (PADs) catalyze the post-translational hydrolysis of arginine residues to form citrulline. This once obscure modification is now known to play a key role in the etiology of multiple autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, lupus, and ulcerative colitis) and in some forms of cancer. Among the five human PADs (PAD1, -2, -3, -4, and -6), it is unclear which isozyme contributes to disease pathogenesis. Toward the identification of potent, selective, and bioavailable PAD inhibitors that can be used to elucidate the specific roles of each isozyme, we describe tetrazole analogs as suitable backbone amide bond bioisosteres for the parent pan PAD inhibitor Cl-amidine. These tetrazole based analogs are highly potent and show selectivity toward particular isozymes. Importantly, one of the compounds, biphenyl tetrazole tert-butyl Cl-amidine (compound 13), exhibits enhanced cell killing in a PAD4 expressing osteosarcoma bone marrow (U2OS) cell line and can also block the formation of neutrophil extracellular traps. These bioisosteres represent an important step in our efforts to develop stable, bioavailable, and selective inhibitors for the PADs.

Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.

Mon, 06/15/2015 - 12:00pm

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.