eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 44 min 32 sec ago

A Delphi process to address medication appropriateness for older persons with multiple chronic conditions

Wed, 12/07/2016 - 3:25pm

BACKGROUND: Frameworks exist to evaluate the appropriateness of medication regimens for older patients with multiple medical conditions (MCCs). Less is known about how to translate the concepts of the frameworks into specific strategies to identify and remediate inappropriate regimens.

METHODS: Modified Delphi method involving iterative rounds of input from panel members. Panelists (n = 9) represented the disciplines of nursing, medicine and pharmacy. Included among the physicians were two geriatricians, one general internist, one family practitioner, one cardiologist and two nephrologists. They participated in 3 rounds of web-based anonymous surveys.

RESULTS: The panel reached consensus on a set of markers to identify problems with medication regimens, including patient/caregiver report of non-adherence, medication complexity, cognitive impairment, medications identified by expert opinion as inappropriate for older persons, excessively tight blood sugar and blood pressure control among persons with diabetes mellitus, patient/caregiver report of adverse medication effects or medications not achieving desired outcomes, and total number of medications. The panel also reached consensus on approaches to address these problems, including endorsement of strategies to discontinue medications with known benefit if necessary because of problems with feasibility or lack of alignment with patient goals.

CONCLUSIONS: The results of the Delphi process provide the basis for an algorithm to improve medication regimens among older persons with MCCs. The algorithm will require assessment not only of medications and diagnoses but also cognition and social support, and it will support discontinuation of medications both when risks outweigh benefits and when regimens are not feasible or do not align with goals.

Apontic regulates somatic stem cell numbers in Drosophila testes

Wed, 12/07/2016 - 3:24pm

BACKGROUND: Microenvironments called niches maintain resident stem cell populations by balancing self-renewal with differentiation, but the genetic regulation of this process is unclear. The niche of the Drosophila testis is well-characterized and genetically tractable, making it ideal for investigating the molecular regulation of stem cell biology. The JAK/STAT pathway, activated by signals from a niche component called the hub, maintains both germline and somatic stem cells.

RESULTS: This study investigated the molecular regulation of the JAK/STAT pathway in the stem cells of the Drosophila testis. We determined that the transcriptional regulator Apontic (Apt) acts in the somatic (cyst) stem cells (CySCs) to balance differentiation and maintenance. We found Apt functions as a negative feedback inhibitor of STAT activity, which enables cyst cell maturation. Simultaneous loss of the STAT regulators apt and Socs36E, or the Stat92E-targeting microRNA miR-279, expanded the somatic stem cell-like population.

CONCLUSIONS: Genetic analysis revealed that a conserved genetic regulatory network limits JAK/STAT activity in the somatic stem cells of Drosophila testis. In these cells, we determined JAK/STAT signaling promotes apt expression. Then, Apt functions through Socs36E and miR-279 to attenuate pathway activation, which is required for timely CySC differentiation. We propose that Apt acts as a core component of a STAT-regulatory circuit to prevent stem cell overpopulation and allow stem cell maturation.

Does the Mutant CAG Expansion in Huntingtin mRNA Interfere with Exonucleolytic Cleavage of its First Exon

Wed, 12/07/2016 - 3:24pm

BACKGROUND: Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington's disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments.

OBJECTIVES: We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA.

METHODS: Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection.

RESULTS: Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites.

CONCLUSIONS: Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage.

Total Elbow Arthroplasty in the United States: Evaluation of Cost, Patient Demographics, and Complication Rates

Wed, 12/07/2016 - 3:23pm

Total elbow arthroplasty (TEA) is utilized in the treatment of rheumatoid and post-traumatic elbow arthritis. TEA is a relatively low volume surgery in comparison to other types of arthroplasty and therefore little is known about current surgical utilization, patient demographics and complication rates in the United States. The purpose of our study is to evaluate the current practice trends and associated in-patient complications of TEA at academic centers in the United States. We queried the University Health Systems Consortium administrative database from 2007 to 2011 for patients who underwent an elective TEA. A descriptive analysis of demographics was performed which included patient age, sex, race, and insurance status. We also evaluated the following patient clinical benchmarks: hospital length of stay (LOS), hospital direct cost, in-hospital mortality, complications, and 30-day readmission rates. Our cohort consisted of 3146 adult patients (36.5% male and 63.5% female) with an average age of 58 years who underwent a total elbow arthroplasty (159 academic medical centers) in the United States. The racial demographics included 2334 (74%) Caucasian, 285 (9%) black, 236 (7.5%) Hispanic, 16 (0.5%) Asian, and 283 (9%) other patients. The mean LOS was 4.2+/-5 days and the mean total direct cost for the hospital was 16,300+/-4000 US Dollars per case. The overall inpatient complication rate was 3.1% and included mortality < 1%, DVT (0.8%), re-operation (0.5%), and infection (0.4%). The 30-day readmission rate was 4.4%. TEA is a relatively uncommon surgery in comparison to other forms of arthroplasty but is associated with low in-patient and 30-day perioperative complication rate. Additionally, the 30-day readmission rate and overall hospital costs are comparable to the traditional total hip and knee arthroplasty surgeries.

Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A Dissertation

Tue, 12/06/2016 - 1:07pm

A comprehensive understanding about how genetic variants and mutations contribute to phenotypic variations and alterations entails experimental technologies and analytical methodologies that are able to detect genetic variants/mutations from various biological samples in a timely and accurate manner. High-throughput sequencing technology represents the latest achievement in a series of efforts to facilitate genetic variants discovery and genotyping and promises to transform the way we tackle healthcare and biomedical problems. The tremendous amount of data generated by this new technology, however, needs to be processed and analyzed in an accurate and efficient way in order to fully harness its potential. Structural variation (SV) encompasses a wide range of genetic variations with different sizes and generated by diverse mechanisms. Due to the technical difficulties of reliably detecting SVs, their characterization lags behind that of SNPs and indels. In this dissertation I presented two novel computational methods: one for detecting transposable element (TE) transpositions and the other for detecting SVs in general using a local assembly approach. Both methods are able to pinpoint breakpoint junctions at single-nucleotide resolution and estimate variant allele frequencies in the sample. I also applied those methods to study the impact of TE transpositions on the genomic stability, the inheritance patterns of TE insertions in the population and the molecular mechanisms and potential functional consequences of somatic SVs in cancer genomes.

Functions of Argonaute Proteins in Self Versus Non-Self Recognition in the C. elegans Germline: A Dissertation

Tue, 12/06/2016 - 1:07pm

Organisms employ sophisticated mechanisms to silence foreign nucleic acid, such as viruses and transposons. Evidence exists for pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), but the mechanisms that distinguish “self” from “non-self” are not well understood. Our studies on transgene silencing in C. elegans have uncovered an RNA surveillance system in which the PIWI protein, PRG-1, uses a vast repertoire of piRNAs to recognize foreign transcripts and to initiate epigenetic silencing. Partial base pairing by piRNAs is sufficient to guide PRG-1 targeting. PRG-1 in turn recruits RdRP to synthesize perfectly matching antisense siRNAs (22G-RNAs) that are loaded onto worm-specific Argonaute (WAGO) proteins. WAGOs collaborate with chromatin factors to maintain epigenetic silencing (RNAe). Since mismatches are allowed during piRNA targeting, piRNAs could—in theory— target any transcript expressed in the germline, but germline genes are not subject to silencing by RNAe. Moreover, some foreign sequences are expressed and appear to be adopted as “self.” How are “self” transcripts distinguished from foreign transcripts? We have found that another Argonaute, CSR-1, and its siRNAs—also synthesized by RdRP—protect endogenous genes from silencing by RNAe. We refer to this pathway as RNA-mediated gene activation (RNAa). Reducing CSR-1 or PRG-1 or increasing piRNA targeting can shift the balance towards expression or silencing, indicating that PRG-1 and CSR-1 compete for control over their targets. Thus worms have evolved a remarkable nucleic acids immunity mechanism in which opposing Argonaute pathways generate and maintain epigenetic memories of self and non-self nucleotide sequences.

Autophagy-Independent Role for Beclin 1 in the Regulation of Growth Factor Receptor Signaling: A Dissertation

Tue, 12/06/2016 - 1:06pm

Beclin 1 is a haplo-insufficient tumor suppressor that is decreased in many human tumors. The function of Beclin 1 in cancer has been attributed primarily to its role in the degradative process of autophagy. However, the role of autophagy itself in tumorigenesis is context-dependent and can be both preventive and promoting. Due to its dual function in cancer a better understanding of this process is necessary to develop potential novel cancer therapies. To gain insight into the role of autophagy in breast carcinoma, I analyzed the autophagydependency of different subtypes of breast cancer. My results implicate that triple-negative breast carcinoma cells are more dependent on autophagy than luminal breast carcinoma cells. Chemical inhibition of autophagy decreased the tumorigenicity of triple-negative breast carcinoma cells with regard to proliferation and anchorage-independent growth. However, RNAi-mediated suppression of two autophagy genes, ATG5 and Beclin 1, revealed different outcomes. While suppression of ATG5 decreased glycolysis, Beclin 1 depletion did not affect the glycolytic rates. These results suggest autophagy-independent pro-tumorigenic effects of loss of Beclin 1 in cancer.

Beclin 1 is a core component of the Vps34/Class III PI3K (PI3KC3) and Vps15/p150 complex that regulates multiple membrane trafficking events. I describe a novel mechanism of action for Beclin 1 in breast cancer involving its control of growth factor receptor signaling. I identify a specific stage of early endosome maturation that is regulated by Beclin 1, the transition of APPL1- containing phosphatidyIinositol 3-phosphate-negative (PI3P-) endosomes to PI3P+ endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P-/APPL+ signaling competent compartment. As a result, suppression of BECN1 sustains growth factor stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, Beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Taken together my data identify a novel role for Beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of Beclin 1 expression would enhance breast cancer progression independent of its impact on autophagy.

The Influence of the Insulin-Like Gene Family and Diet-Drug Interactions on Caenorhabditis elegans Physiology: A Dissertation

Tue, 12/06/2016 - 1:06pm

Aging can be defined as the accumulation of changes affecting the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. In its simplicity, aging is the systemwide deterioration of an organism. Genetic studies have identified many potential molecular mechanisms of aging including DNA damage, telomere shortening, mitochondrial dysfunction, increased oxidative stress, uncontrolled inflammation, and hormone dysregulation (reviewed in [1]). However, in reality, aging is likely to be a combination of some (or potentially all) of these mechanisms.

Interestingly, aging and metabolism are tightly coordinated. Aging is a major contributor to metabolic decline and related diseases, including type 2 diabetes, metabolic syndrome, and cancer. One of the best characterized metabolic pathways implicated in aging is the insulin/IGF-1 signaling (IIS) pathway. Downstream signaling components of the IIS pathway receptor have been well studied and include an interconnected network of signaling events that regulate many physiological outputs. However, less is known about the role of upstream signaling components and how intracellular pathways and physiology are regulated accordingly. In Part I, I present my work towards understanding upstream IIS pathway components using a systems biology approach. The goal of this study is to gain insight into the redundancy and specificity of the insulin gene family responsible for initiating IIS pathway activity in Caenorhabditis elegans. The information gained will serve as a foundation for future studies dissecting the molecular mechanisms of this pathway in efforts to uncouple the downstream signaling and physiological outputs.

The clear impact of metabolism on aging and disease stimulated questions regarding the potential of promoting health and longevity through diet and dietary mimetics. Recent findings indicate reduced food intake, meal timing and nutritional modulation of the gut microbiome can ameliorate signs of aging and age-associated diseases. Aging, therefore, is also the result of dynamic and complex interplay between genes of an organism and its environment. In Part II, I will discuss my efforts to gain insight into how diet influences aging. This preliminary study has demonstrated that diet can affect lifespan in the model organism, C. elegans. Additionally, we observe diet-specific effects on drug efficacy that, in turn, modulates C. elegans lifespan and reproduction. The implications of these experiments, while limited, illustrate a potentially greater role in diet- and drug-mediated effects on lifespan.

Regulation of CDK1 Activity during the G1/S Transition in S. cerevisiae through Specific Cyclin-Substrate Docking: A Dissertation

Tue, 12/06/2016 - 1:06pm

Several cell cycle events require specific forms of the cyclin-CDK complexes. It has been known for some time that cyclins not only contribute by activating the CDK but also by choosing substrates and/or specifying the location of the CDK holoenzyme. There are several examples of B-type cyclins identifying certain peptide motifs in their specific substrates through a conserved region in their structure. Such interactions were not known for the G1 class of cyclins, which are instrumental in helping the cell decide whether or not to commit to a new cell cycle, a function that is non-redundant with B-type cylins in budding yeast. In this dissertation, I have presented evidence that some G1 cyclins in budding yeast, Cln1/2, specifically identify substrates by interacting with a leucine-proline rich sequence different from the ones used by B-type cyclins. These “LP” type docking motifs determine cyclin specificity, promote phosphorylation of suboptimal CDK sites and multi-site phosphorylation of substrates both in vivo and in vitro. Subsequently, we have discovered the substrate-binding region in Cln2 and further showed that this region is highly conserved amongst a variety of fungal G1 cyclins from budding yeasts to molds and mushrooms, thus suggesting a conserved function across fungal evolution. Interestingly, this region is close to but not same as the one implicated in B-type cyclins to binding substrates. We discovered that the main effect of obliterating this interaction is to delay cell cycle entry in budding yeast, such that cells begin DNA replication and budding only at a larger than normal cell size, possibly resulting from incomplete multi-site phosphorylation of several key substrates. The docking-deficient Cln2 was also defective in promoting polarized bud morphogenesis. Quite interestingly, we found that a CDK inhibitor, Far1, could regulate the Cln2-CDK1 activity partly by inhibiting the Cln2-substrate interaction, thus demonstrating that docking interactions can be targets of regulation. Finally, by studying many fungal cyclins exogenously expressed in budding yeast, we discovered that some have the ability to make the CDK hyper-potent, which suggests that these cyclins confer special properties to the CDK. My work provides mechanistic clues for cyclinspecific events during the cell cycle, demonstrates the usefulness of synthetic strategies in problem solving and also possibly resolves long-standing uncertainties regarding functions of some cell cycle proteins.

Targeting Drug Resistance in Chronic Myeloid Leukemia: A Dissertation

Mon, 12/05/2016 - 9:44pm

Inhibiting BCR-ABL kinase activity with tyrosine kinase inhibitors (TKIs) has been the frontline therapy for CML. Resistance to TKIs frequently occurs, but the mechanisms remain elusive.

First, to uncover survival pathways involved in TKI resistance in CML, I conducted a genome-wide RNAi screen in human CML cells to identify genes governing cellular sensitivity to the first generation TKI called IM (Gleevec). I identified genes converging on and activating the MEK/ERK pathway through transcriptional up-regulation of PRKCH. Combining IM with a MEK inhibitor synergistically kills TKI-resistant CML cells and CML stem cells.

Next, I performed single cell RNA-seq to compare expression profiles of CML stem cells and hematopoietic stem cells isolated from the same patient. Among the genes that are preferentially expressed in CML stem cells is PIM2, which encodes a pro-survival serine-threonine kinase that phosphorylates and inhibits the pro-apoptotic protein BAD. Inhibiting PIM2 function sensitizes CML stem cells to IM-induced apoptosis and prevents disease relapse in a CML mouse model.

Last, I devised a CRISPR-Cas9 based strategy to perform insertional mutagenesis at a defined genomic location in murine hematopoietic Ba/F3 cells. As proof of principle, we showed its capability to perform unbiased, saturated point mutagenesis in a 9 amino acid region of BCR-ABL encompassing the socalled “gatekeeper” residue, an important determinant of TKI binding. We found that the ranking order of mutations from the screen correlated well with their prevalence in IM-resistant CML patients.

Overall, my findings reveal novel resistance mechanisms in CML and provide alternative therapeutic strategies.

Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation

Mon, 12/05/2016 - 9:44pm

Duplications and deletions are a major source of genomic variation. Duplications, specifically, have a significant impact on gene genesis and dosage, and the malaria parasite P. falciparum has developed resistance to a growing number of anti-malarial drugs via gene duplication. It also contains highly duplicated families of antigenically variable allelic genes. While specific genes and families have been studied, a comprehensive analysis of duplications and deletions within the reference genome and population has not been performed. We analyzed the extent of segmental duplications (SD) in the reference genome for P. falciparum, primarily by a whole genome self alignment. We discovered that while 5% of the genome identified as SD, the distribution within the genome was partition clustered, with the vast majority localized to the subtelomeres. Within the SDs, we found an overrepresentation of genes encoding antigenically diverse proteins exposed to the extracellular membrane, specifically the var, rifin, and stevor gene families. To examine variation of duplications and deletions within the parasite populations, we designed a novel computational methodology to identify copy number variants (CNVs) from high throughput sequencing, using a read depth based approach refined with discordant read pairs. After validating the program against in vitro lab cultures, we analyzed isolates from Senegal for initial tests into clinical isolates. We then expanded our search to a global sample of 610 strains from Africa and South East Asia, identifying 68 CNV regions. Geographically, genic CNV were found on average in less than 10% of the population, indicating that CNV are rare. However, CNVs at high frequency were almost exclusively duplications associated with known drug resistant CNVs. We also identified the novel biallelic duplication of the crt gene – containing both the chloroquine resistant and sensitive allele. The synthesis of our SD and CNV analysis indicates a CNV conservative P. falciparum genome except where drug and human immune pressure select for gene duplication.

The Exocyst Subunit Sec6 Interacts with Assembled Exocytic Snare Complexes: A Dissertation

Mon, 12/05/2016 - 9:44pm

In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and to the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multi-subunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in other trafficking pathways. Contrary to these other pathways, our lab previously suggested that the exocyst subunit Sec6, a component of the exocytosis-specific tethering complex, inhibited Sec9:Sso1 SNARE complex assembly due to interactions in vitro with the SNARE protein Sec9 (Sivaram et al., 2005).

My goal for this project was to test the hypothesis that Sec6 inhibited SNARE complex assembly in vivo. I therefore chose to generate Sec6:Sec9 loss-of-binding mutants, and study their effect both in vitro and in vivo. I identified a patch of residues on Sec9 that, when mutated, are sufficient to disrupt the novel Sec6-SNARE interaction. Additionally, I found that the previous inhibitory role for Sec6 in SNARE assembly was due to a data mis-interpretation; my re-interpretation of the data shows that Sec6 has a mild, if any, inhibitory effect on SNARE assembly. My results suggest a potential positive role for Sec6 in SNARE complex assembly, similar to the role observed for other tether-SNARE interactions.

Requirement and Function of Hippo Pathway Signaling in the Mammalian Gastrointestinal Tract: A Dissertation

Mon, 12/05/2016 - 9:43pm

In cancer, aberrant activation of developmental signaling pathways such as the Hippo Pathway has been shown to drive proliferation and invasion of cancer cells. Therefore, understanding the normal function of the Hippo Pathway during embryonic development can provide critical insight into how aberrant activity contributes to tumorigenesis. This dissertation explores the role of the Hippo Pathway members YAP and TAZ in gastrointestinal (GI) development and tumorigenesis. I use mouse genetics to systematically dissect the roles of YAP/TAZ in the endoderm-derived gastrointestinal epithelia and mesoderm-derived gastrointestinal mesenchyme during mammalian development. In the GI epithelium, I demonstrate that YAP/TAZ are dispensable for development and homeostasis. However, YAP/TAZ are required for Wnt pathway-driven tumorigenesis. I find that YAP/TAZ are direct transcriptional targets of Wnt/TCF4 signaling. In the GI mesenchyme, I describe a previously unknown requirement for YAP/TAZ activity during mammalian GI development. YAP/TAZ are involved in normal GI mesenchymal differentiation and function as transcriptional co-repressors in a progenitor cell population. In this way, YAP/TAZ act as molecular gatekeepers prior to Hedgehog-mediated differentiation into smooth muscle cells. This work unveils a previously unknown requirement for Hippo pathway signaling in the mammalian GI tract and a novel mechanism wherein YAP/TAZ function as transcriptional co-repressors to maintain a mesenchymal progenitor cell population.

Into the Light: Using Technology to Develop a Mother/Family Centered Peer Support Network

Fri, 12/02/2016 - 10:35am

This paper highlights the work of Postpartum Progress Inc., to engage with large online communities of women experiencing a perinatal mental health issue, in order to explore the efficacy of peer support as a treatment modality. "Into the Light" is a Patient Centered Outcomes Research Institute (PCORI) Pipeline to Proposal project that will bring together diverse stakeholders and patients to build collaborative partnerships. Project goals include developing patient engagement, recruitment and dissemination strategies that reflect the needs of this patient population. Increasing patient access to easily understood information about treatment options when making health care decisions and improving patient-centered research strategies are also aims of the project.

FC Receptor-Mediated Activities of Env-Specific Monoclonal Antibodies Generated from Human Volunteers Receiving a DNA Prime-Protein Boost HIV Vaccine: A Dissertation

Thu, 12/01/2016 - 10:05am

Human immunodeficiency type 1 (HIV-1) is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years’ infection and as a result, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that a moderate protection is possible, which may correlate with antibody dependent cellular cytotoxicity (ADCC) activity. Previous studies in the Lu lab demonstrated that in an HIV-1 vaccine phase I trial, DP6-001, a polyvalent Env DNA prime-protein boost formulation, could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities along with multiple Fc mediated effector functions. I developed a protocol for the production and analysis of HIV-1 Env-specific human monoclonal antibodies (mAbs) isolated from these DP6-001 vaccinees. By utilizing a labeled gp120 bait to isolate Env specific B cells, paired heavy and light chain immunoglobulin (Ig) genes were cloned and allowed for the production of monoclonal antibodies with specificity for gp120. By using this protocol, 13 isolated mAbs from four DP6-001 vaccinees showed broad binding activities to gp120 proteins of diverse subtypes, both autologous and heterologous to vaccine immunogens, with mostly conformational epitopes and a few V3 and C5 specific mAbs. Equally cross-reactive Fc-mediated functional activities, including ADCC and antibody dependent cellular phagocytosis (ADCP), were present with both immune sera and isolated mAbs, confirming the induction of non-neutralizing functional antibodies by the DNA prime- protein boost vaccination. Elicitation of broadly reactive mAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV-1 vaccine design.

Exploiting DNA Repair and ER Stress Response Pathways to Induce Apoptosis in Glioblastoma Multiforme: A Dissertation

Wed, 11/30/2016 - 10:00pm

Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor characterized by a heterogeneous population of cells that are drug resistant, aggressive, and infiltrative. The current standard of care, which has not changed in over a decade, only provides GBM patients with 12-14 months survival post diagnosis. We asked if the addition of a novel endoplasmic reticulum (ER) stress inducing agent, JLK1486, to the standard chemotherapy, temozolomide (TMZ), which induces DNA double strand breaks (DSBs), would enhance TMZ’s efficacy. Because GBMs rely on the ER to mitigate their hypoxic environment and DNA repair to fix TMZ induced DSBs, we reasoned that DSBs occurring during heightened ER stress would be deleterious.

Treatment of GBM cells with TMZ+JLK1486 decreased cell viability and increased cell death due to apoptosis. We found that TMZ+JLK1486 prolonged ER stress induction, as indicated by elevated ER stress marker BiP, ATF4, and CHOP, while sustaining activation of the DNA damage response pathway. This combination produced unresolved DNA DSBs due to RAD51 reduction, a key DNA repair factor. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between ER stress and DNA repair pathways.

The SMURF2-YY1-C-MYC Axis in the Germinal Center Reaction and Diffuse Large B Cell Lymphoma: A Dissertation

Wed, 11/30/2016 - 10:00pm

Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma. Patients who fail conventional therapy (~50%) have a poor prognosis and few treatment options. It is essential to understand the underlying biological processes, the progression of the disease, and utilize this information to develop new therapeutics.

DLBCL patients with high C-MYC expression have a poor prognosis and new therapeutics for these patients are needed. This thesis describes work testing the hypothesis that JQ1, which can indirectly inhibit C-MYC in some tumors, can be used as an effective treatment for DLBCL. Some tumors have an unknown mechanism causing high C-MYC expression, leading me to investigate the underlying mechanisms. YY1 is a transcriptional regulator of c- Myc and has been implicated in DLBCL and as a potential regulator of the germinal center (GC) reaction. DLBCL arises from GC cells or post-GC cells. I tested the hypothesis that YY1 regulates the GC reaction. SMURF2 is an E3-ubiquitin ligase for YY1 and a tumor suppressor for DLBCL. I was interested in examining the mechanism underlying the suppression of DLBCL by SMURF2 leading to the hypothesis that SMURF2 regulates the GC.

This thesis shows JQ1 leads to cell death and cellular senescence in human DLBCL cells. I conclude that BRD4 inhibition by JQ1 or derivatives could provide a new therapeutic avenue for DLBCL patients. I also show loss of YY1 perturbs the GC by decreasing the dark zone and increasing apoptosis. Finally I show modulation of SMURF2 does not affect the GC, suggesting SMURF2 utilizes a different mechanism to act as a tumor suppressor and may not modulate YY1 in the context of the GC.

Predictors of Post-injury Mortality in Elderly Patients with Trauma: A Master's Thesis

Wed, 11/30/2016 - 10:00pm

Background: Traumatic injury remains a major cause of mortality in the US. Older Americans experience lower rates of injury and higher rates of death at lower injury severity than their younger counterparts. The objectives of this study were to explore pre-injury factors and injury patterns that are associated with post-discharge mortality among injured elderly surviving index hospitalization.

Methods: We queried a 5% random sample of Medicare beneficiaries (n=2,002,420) for any hospitalization with a primary ICD-9 diagnosis code for injury. Patients admitted without urgent/emergent admission were excluded, as well as patients presenting from inpatient hospitalization or rehabilitation. The primary endpoint was all-cause mortality. Patients were categorized into three mortality groups: death within 0-30 days, 31-90 days, or 91- 365 days post-discharge from the index hospitalization. These groups were compared with those who survived greater than one year post-discharge. Univariate tests of association and multivariable logistic regression models were utilized to identify factors associated with mortality during the 3 examined periods.

Results: 83,439 elderly patients (4.2%) were admitted with new injuries. 63,628 met inclusion criteria. 1,936 patients (3.0%) died during their index hospitalization, 2,410 (3.8%) died within 0-30 days, 3,084 (4.8%) died within 31-90 days, and 5,718 (9.0%) died within 91- 365 days after discharge. In multivariable adjusted models, advanced age, male sex, and higher Elixhauser score were associated with post-discharge mortality. The presence of critical injury had the greatest effect on mortality early after injury (0-30 days, OR 1.81, CI 1.64-2.00). Discharge to anywhere other than home without services was associated with an increased odds of dying.

Conclusions: Socio-demographic characteristics, disposition, and co-morbid factors were the strongest predictors of post-discharge mortality. Efforts to reduce injury-related mortality should focus on injury prevention and modification of co-morbidities.

Mechanisms of Synaptic Development and Premature Aging in Drosophila: A Dissertation

Wed, 11/30/2016 - 10:00pm

Development and aging, two fundamental aspects of life, remain key biological processes that researchers try to understand. Drosophila melanogaster, thanks to its various merits, serves as an excellent model to study both of these processes. This thesis includes two parts. In the first part, I discuss our finding that the presynaptic neuron controls a retrograde signaling pathway by releasing essential components via exosomes. During synaptic development, postsynaptic cells send retrograde signals to adjust the activity and growth of presynaptic cells. It remains unclear what the mechanism is which triggers the release of retrograde signals; and how presynaptic cells are involved in this signaling event. The first part of this thesis demonstrates that a retrograde signal mediated by Synaptotagmin4 (Syt4) depends on the anterograde delivery of Syt4 protein from the presynaptic neuron to the muscle compartment likely through exosomes. This trans-synaptic transfer of Syt4 is required for the retrograde control of activity-dependent synaptic growth at the Drosophila larval neuromuscular junction.

In the second part of this thesis, I talk about our discovery that the disruption of nuclear envelope (NE) budding, a novel RNA export pathway, is linked to the loss of mitochondrial integrity and premature aging in Drosophila. We demonstrate that several transcripts, which are essential for mitochondrial integrity and function, use NE-budding for nuclear export. Transgenic Drosophila expressing a LamC mutation modeling progeroid syndrome (PS), a premature aging disorder in humans, displays accelerated aging-related phenotypes including progressive mitochondrial degeneration as well as decreased levels of a specific mitochondrial transcript which is normally enriched at NE-budding site. The PS-modeled LamC mutants exhibit abnormal lamina organization that likely disrupts the egress of these RNAs via NE-budding. These results connect defective RNA export through NE-budding to progressive loss of mitochondrial integrity and premature aging in Drosophila.

Levels of YCG1 Limit Condensin Function during the Cell Cycle: A Dissertation

Wed, 11/30/2016 - 4:36pm

For nearly five decades, the simple eukaryote Saccharomyces cerevisiae has been used as a model for understanding the eukaryotic cell cycle. One vein of this research has focused on understanding how chromosome structure is regulated in relation to the cell cycle. This work characterizes a new mechanism that modulates the chromatin organizing condensin complex, in hopes of furthering the understanding of chromosome structure regulation in eukaryotes.

During mitosis, chromosomes are condensed to facilitate their segregation through a process mediated by the condensin complex. Upon interphase onset, condensation is reversed, allowing for efficient transcription and replication of chromosomes. This work demonstrates that Ycg1, the Cap-G subunit of budding yeast condensin, is cell-cycle regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. The cyclical expression of Ycg1 is unique amongst condensin subunits, and is established by a combination of cell cycle-regulated transcription and constitutive proteasomal degradation. Interestingly, when cyclical expression of Ycg1 is disrupted, condensin formation and chromosome association increases, and cells exhibit a delay in cell-cycle entry. These results demonstrate that Ycg1 levels limit condensin function, and suggest that regulating the expression of an individual condensin subunit helps to coordinate chromosome conformation with the cell cycle. These data, along with recent corroborating results in Drosophila melanogaster suggest that condensin regulation through limiting the expression of a single condensin subunit may be broadly conserved amongst eukaryotes.