Syndicate content
Recent documents in eScholarship@UMMS
Updated: 1 hour 52 min ago

Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease

Mon, 08/24/2015 - 10:45am

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme beta-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were largely normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated SD patients and those in future clinical trials.

Novel mutations support a role for Profilin 1 in the pathogenesis of ALS

Mon, 08/24/2015 - 10:45am

Mutations in the gene encoding profilin 1 (PFN1) have recently been shown to cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We sequenced the PFN1 gene in a cohort of ALS patients (n = 485) and detected 2 novel variants (A20T and Q139L), as well as 4 cases with the previously identified E117G rare variant ( approximately 1.2%). A case-control meta-analysis of all published E117G ALS+/- frontotemporal dementia cases including those identified in this report was significant p = 0.001, odds ratio = 3.26 (95% confidence interval, 1.6-6.7), demonstrating this variant to be a susceptibility allele. Postmortem tissue from available patients displayed classic TAR DNA-binding protein 43 pathology. In both transient transfections and in fibroblasts from a patient with the A20T change, we showed that this novel PFN1 mutation causes protein aggregation and the formation of insoluble high molecular weight species which is a hallmark of ALS pathology. Our findings show that PFN1 is a rare cause of ALS and adds further weight to the underlying genetic heterogeneity of this disease.

The distinct genetic pattern of ALS in Turkey and novel mutations

Mon, 08/24/2015 - 10:45am

The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population.

AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system

Mon, 08/24/2015 - 10:45am

Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the beta-subunit of beta-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.

Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses

Mon, 08/24/2015 - 10:45am

Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in beta-galactosidase or beta-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.

Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy

Mon, 08/24/2015 - 10:45am

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme beta-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5+/-0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.

Survival benefit and phenotypic improvement by hamartin gene therapy in a tuberous sclerosis mouse brain model

Mon, 08/24/2015 - 10:45am

We examined the potential benefit of gene therapy in a mouse model of tuberous sclerosis complex (TSC) in which there is embryonic loss of Tsc1 (hamartin) in brain neurons. An adeno-associated virus (AAV) vector (serotype rh8) expressing a tagged form of hamartin was injected into the cerebral ventricles of newborn pups with the genotype Tsc1cc (homozygous for a conditional floxed Tsc1 allele) SynI-cre+, in which Tsc1 is lost selectively in neurons starting at embryonic day 12. Vector-treated Tsc1ccSynIcre+ mice showed a marked improvement in survival from a mean of 22days in non-injected mice to 52days in AAV hamartin vector-injected mice, with improved weight gain and motor behavior in the latter. Pathologic studies showed normalization of neuron size and a decrease in markers of mTOR activation in treated as compared to untreated mutant littermates. Hence, we show that gene replacement in the brain is an effective therapeutic approach in this mouse model of TSC1. Our strategy for gene therapy has the advantages that therapy can be achieved from a single application, as compared to repeated treatment with drugs, and that AAV vectors have been found to have minimal to no toxicity in clinical trials for other neurologic conditions. Although there are many additional issues to be addressed, our studies support gene therapy as a useful approach in TSC patients.

Facioscapulohumeral muscular dystrophy as a model for epigenetic regulation and disease

Mon, 08/24/2015 - 10:45am

SIGNIFICANCE: Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression.

RECENT ADVANCES: In the context of a genetically permissive allele, the one aspect of FSHD that is consistent across all known cases is the aberrant epigenetic state of the disease locus. In addition, certain mutations in the chromatin regulator SMCHD1 (structural maintenance of chromosomes hinge-domain protein 1) are sufficient to cause FSHD2 and enhance disease severity in FSHD1. Thus, there are multiple pathways to generate the epigenetic dysregulation required for FSHD.

CRITICAL ISSUES: Why do some individuals with the genetic requirements for FSHD develop disease pathology, while others remain asymptomatic? Similarly, disease progression is highly variable among individuals. What are the relative contributions of genetic background and environmental factors in determining disease manifestation, progression, and severity in FSHD? What is the interplay between epigenetic factors regulating the disease locus and which, if any, are viable therapeutic targets?

FUTURE DIRECTIONS: Epigenetic regulation represents a potentially powerful therapeutic target for FSHD. Determining the epigenetic signatures that are predictive of disease severity and identifying the spectrum of disease modifiers in FSHD are vital to the development of effective therapies.

Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients

Mon, 08/24/2015 - 10:45am

Disruption of endoplasmic reticulum (ER) proteostasis is a salient feature of amyotrophic lateral sclerosis (ALS). Upregulation of ER foldases of the protein disulfide isomerase (PDI) family has been reported in ALS mouse models and spinal cord tissue and body fluids derived from sporadic ALS cases. Although in vitro studies suggest a neuroprotective role of PDIs in ALS, the possible contribution of genetic mutations of these ER foldases in the disease process remains unknown. Interestingly, intronic variants of the PDIA1 gene were recently reported as a risk factor for ALS. Here, we initially screened for mutations in two major PDI genes (PDIA1/P4HB and PDIA3/ERp57) in a US cohort of 96 familial and 96 sporadic ALS patients using direct DNA sequencing. Then, 463 familial and 445 sporadic ALS patients from two independent cohorts were also screened for mutations in these two genes using whole exome sequencing. A total of nine PDIA1 missense variants and seven PDIA3 missense variants were identified in 16 ALS patients. We have identified several novel and rare single nucleotide polymorphisms (SNPs) in both genes that are enriched in ALS cases compared with a large group of control subjects showing a frequency of around 1% in ALS cases. The possible biological and structural impact of these ALS-linked PDI variants is also discussed.

Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2

Mon, 08/24/2015 - 10:45am

The RNA-processing protein TDP-43 is central to the pathogenesis of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron (MN) disease [1-4]. TDP-43 is conserved in Drosophila, where it has been the topic of considerable study, but how TDP-43 mutations lead to age-dependent neurodegeneration is unclear and most approaches have not directly examined changes in MN morphology with age [5]. We used a mosaic approach to study age-dependent MN loss in the adult fly leg where it is possible to resolve single motor axons, NMJs and active zones, and perform rapid forward genetic screens. We show that expression of TDP-43Q331K caused dying-back of NMJs and axons, which could not be suppressed by mutations that block Wallerian degeneration. We report the identification of three genes that suppress TDP-43 toxicity, including shaggy/GSK3, a known modifier of neurodegeneration [6]. The two additional novel suppressors, hat-trick and xmas-2, function in chromatin modeling and RNA export, two processes recently implicated in human ALS [7, 8]. Loss of shaggy/GSK3, hat-trick, or xmas-2 does not suppress Wallerian degeneration, arguing TDP-43Q331K-induced and Wallerian degeneration are genetically distinct processes. In addition to delineating genetic factors that modify TDP-43 toxicity, these results establish the Drosophila adult leg as a valuable new tool for the in vivo study of adult MN phenotypes.

Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

Mon, 08/24/2015 - 10:45am

GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid beta-galactosidase (betagal) activity. betagal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mbetagal vector infused systemically in adult GM1 mice (betaGal(-/-)) at 1 x 10(11) or 3 x 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high betaGal activity in liver and serum. Moderate betaGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 x 10(11) vg dose revealed increased presence of betagal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 x 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of betagal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

UMCCTS Newsletter, August 2015

Fri, 08/21/2015 - 2:46pm

This is the August 2015 issue of the UMass Center for Clinical and Translational Science Newsletter containing news and events of interest.

Data Management Outreach to Junior Faculty Members: A Case Study

Fri, 08/21/2015 - 2:06pm

New tenure track faculty members are generally in positions as leaders of a research laboratory or group for the first time. In addition to building up the infrastructure of a research lab (whether space, equipment, funding, or personnel), the new faculty member is also setting the research process and expectations for the first time as well. This article highlights outreach to new faculty members assisting those individuals with developing a data management protocol that effectively supports the laboratory researchers to make quality data available internally to and externally from a research laboratory. Using a self-assessment tool and reflective conversation, junior faculty were offered insight and advice into creating a data management protocol for use in their research laboratory.

Chromosome Conformation Capture (3C) in Budding Yeast

Mon, 08/17/2015 - 3:36pm

Chromosome conformation capture (3C) is a method for studying chromosomal organization that takes advantage of formaldehyde cross-linking to measure the spatial association of two pieces of chromatin. The 3C method begins with whole-cell formaldehyde fixation of chromatin. After cell lysis, solubilized chromatin is digested with a type II restriction endonuclease, and cross-linked DNA fragments are ligated together. Cross-links are reversed by degradation with proteinase K, and chimeric DNA molecules are purified by standard phenol:chloroform extraction. The resulting 3C library represents chromatin fragments that may be separated by large genomic distances or located on different chromosomes, but are close enough in three-dimensional space for cross-linking. Locus-specific oligonucleotide primers are used to detect interactions of interest in the 3C library using end-point polymerase chain reaction (PCR).

Randomized ligation control for chromosome conformation capture

Mon, 08/17/2015 - 3:36pm

In experiments using chromosome conformation capture followed by PCR (3C-PCR) or chromosome conformation capture carbon copy (5C), it is critical to control for intrinsic biases in the restriction fragments of interest and the probes or primers used for detection. Characteristics such as GC%, annealing temperature, efficiency of 3C primers or 5C probes, and length of restriction fragment can cause variations in primer or probe performance and fragment ligation efficiency. Bias can be measured empirically by production of a random control library, as described here, to be used with the 3C library of interest.

Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast

Mon, 08/17/2015 - 3:36pm

Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.

Hi-C in Budding Yeast

Mon, 08/17/2015 - 3:36pm

Hi-C enables simultaneous detection of interaction frequencies between all possible pairs of restriction fragments in the genome. The Hi-C method is based on chromosome conformation capture (3C), which uses formaldehyde cross-linking to fix chromatin regions that interact in three-dimensional space, irrespective of their genomic locations. In the Hi-C protocol described here, cross-linked chromatin is digested with HindIII and the ends are filled in with a nucleotide mix containing biotinylated dCTP. These fragments are ligated together, and the resulting chimeric molecules are purified and sheared to reduce length. Finally, biotinylated ligation junctions are pulled down with streptavidin-coated beads, linked to high-throughput sequencing adaptors, and amplified via polymerase chain reaction (PCR). The resolution of the Hi-C data set will depend on the depth of sequencing and choice of restriction enzyme. When sufficient sequence reads are obtained, information on chromatin interactions and chromosome conformation can be derived at single restriction fragment resolution for complete genomes.

Measuring Chromatin Structure in Budding Yeast

Mon, 08/17/2015 - 3:36pm

Chromosome conformation capture (3C) has revolutionized the ways in which the conformation of chromatin and its relationship to other molecular functions can be studied. 3C-based techniques are used to determine the spatial arrangement of chromosomes in organisms ranging from bacteria to humans. In particular, they can be applied to the study of chromosome folding and organization in model organisms with small genomes and for which powerful genetic tools exist, such as budding yeast. Studies in yeast allow the mechanisms that establish or maintain chromatin structure to be analyzed at very high resolution with relatively low cost, and further our understanding of these fundamental processes in higher eukaryotes as well. Here we provide an overview of chromatin structure and introduce methods for performing 3C, with a focus on studies in budding yeast. Variations of the basic 3C approach (e.g., 3C-PCR, 5C, and Hi-C) can be used according to the scope and goals of a given experiment.

Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C

Mon, 08/17/2015 - 3:36pm

We describe a Hi-C-based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, "gene looping" factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction.