eScholarship@UMMS

Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 40 min ago

CA19-9 decrease at 8 weeks as a predictor of overall survival in a randomized phase III trial (MPACT) of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic pancreatic cancer

Tue, 10/18/2016 - 11:00pm

BACKGROUND: A phase I/II study and subsequent phase III study (MPACT) reported significant correlations between CA19-9 decreases and prolonged overall survival (OS) with nab-paclitaxel plus gemcitabine (nab-P + Gem) treatment for metastatic pancreatic cancer (MPC). CA19-9 changes at week 8 and potential associations with efficacy were investigated as part of an exploratory analysis in the MPACT trial.

PATIENTS AND METHODS: Untreated patients with MPC (N = 861) received nab-P + Gem or Gem alone. CA19-9 was evaluated at baseline and every 8 weeks.

RESULTS: Patients with baseline and week-8 CA19-9 measurements were analyzed (nab-P + Gem: 252; Gem: 202). In an analysis pooling the treatments, patients with any CA19-9 decline (80%) versus those without (20%) had improved OS (median 11.1 versus 8.0 months; P = 0.005). In the nab-P + Gem arm, patients with (n = 206) versus without (n = 46) any CA19-9 decrease at week 8 had a confirmed overall response rate (ORR) of 40% versus 13%, and a median OS of 13.2 versus 8.3 months (P = 0.001), respectively. In the Gem-alone arm, patients with (n = 159) versus without (n = 43) CA19-9 decrease at week 8 had a confirmed ORR of 15% versus 5%, and a median OS of 9.4 versus 7.1 months (P = 0.404), respectively. In the nab-P + Gem and Gem-alone arms, by week 8, 16% (40/252) and 6% (13/202) of patients, respectively, had an unconfirmed radiologic response (median OS 13.7 and 14.7 months, respectively), and 79% and 84% of patients, respectively, had stable disease (SD) (median OS 11.1 and 9 months, respectively). Patients with SD and any CA19-9 decrease (158/199 and 133/170) had a median OS of 13.2 and 9.4 months, respectively.

CONCLUSION: This analysis demonstrated that, in patients with MPC, any CA19-9 decrease at week 8 can be an early marker for chemotherapy efficacy, including in those patients with SD. CA19-9 decrease identified more patients with survival benefit than radiologic response by week 8.

Combining statistics from two national complex surveys to estimate injury rates per hour exposed and variance by activity in the USA

Tue, 10/18/2016 - 11:00pm

BACKGROUND: A common issue in descriptive injury epidemiology is that in order to calculate injury rates that account for the time spent in an activity, both injury cases and exposure time of specific activities need to be collected. In reality, few national surveys have this capacity. To address this issue, we combined statistics from two different national complex surveys as inputs for the numerator and denominator to estimate injury rate, accounting for the time spent in specific activities and included a procedure to estimate variance using the combined surveys.

METHODS: The 2010 National Health Interview Survey (NHIS) was used to quantify injuries, and the 2010 American Time Use Survey (ATUS) was used to quantify time of exposure to specific activities. The injury rate was estimated by dividing the average number of injuries (from NHIS) by average exposure hours (from ATUS), both measured for specific activities. The variance was calculated using the 'delta method', a general method for variance estimation with complex surveys.

RESULTS: Among the five types of injuries examined, 'sport and exercise' had the highest rate (12.64 injuries per 100 000 h), followed by 'working around house/yard' (6.14), driving/riding a motor vehicle (2.98), working (1.45) and sleeping/resting/eating/drinking (0.23). The results show a ranking of injury rate by activity quite different from estimates using population as the denominator.

CONCLUSIONS: Our approach produces an estimate of injury risk which includes activity exposure time and may more reliably reflect the underlying injury risks, offering an alternative method for injury surveillance and research.

Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft

Tue, 10/18/2016 - 11:00pm

Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and alphaCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed alphaCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of alphaCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.

Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

Tue, 10/18/2016 - 11:00pm

Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-beta-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.

DNA immunization as a technology platform for monoclonal antibody induction

Tue, 10/18/2016 - 11:00pm

To combat the threat of many emerging infectious diseases, DNA immunization offers a unique and powerful approach to the production of high-quality monoclonal antibodies (mAbs) against various pathogens. Compared with traditional protein-based immunization approaches, DNA immunization is efficient for testing novel immunogen designs, does not require the production or purification of proteins from a pathogen or the use of recombinant protein technology and is effective at generating mAbs against conformation-sensitive targets. Although significant progress in the use of DNA immunization to generate mAbs has been made over the last two decades, the literature does not contain an updated summary of this experience. The current review provides a comprehensive analysis of the literature, including our own work, describing the use of DNA immunization to produce highly functional mAbs, in particular, those against emerging infectious diseases. Critical factors such as immunogen design, delivery approach, immunization schedule, use of immune modulators and the role of final boost immunization are discussed in detail.

Neural Integration Underlying a Time-Compensated Sun Compass in the Migratory Monarch Butterfly

Tue, 10/18/2016 - 11:00pm

Migrating eastern North American monarch butterflies use a time-compensated sun compass to adjust their flight to the southwest direction. Although the antennal genetic circadian clock and the azimuth of the sun are instrumental for proper function of the compass, it is unclear how these signals are represented on a neuronal level and how they are integrated to produce flight control. To address these questions, we constructed a receptive field model of the compound eye that encodes the solar azimuth. We then derived a neural circuit model that integrates azimuthal and circadian signals to correct flight direction. The model demonstrates an integration mechanism, which produces robust trajectories reaching the southwest regardless of the time of day and includes a configuration for remigration. Comparison of model simulations with flight trajectories of butterflies in a flight simulator shows analogous behaviors and affirms the prediction that midday is the optimal time for migratory flight.

Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy

Tue, 10/18/2016 - 11:00pm

Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage-colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1,but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway.

CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia

Tue, 10/18/2016 - 11:00pm

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase complex (SCF(Cyclin F)). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCF(Cyclin F) substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.

Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function

Tue, 10/18/2016 - 10:59pm

To probe the mechanism of the Hsp90 chaperone that is required for the maturation of many signaling proteins in eukaryotes, we analyzed the effects of all individual amino acid changes in the ATPase domain on yeast growth rate. The sensitivity of a position to mutation was strongly influenced by proximity to the phosphates of ATP, indicating that ATPase-driven conformational changes impose stringent physical constraints on Hsp90. To investigate how these constraints may vary for different clients, we performed biochemical analyses on a panel of Hsp90 mutants spanning the full range of observed fitness effects. We observed distinct effects of nine Hsp90 mutations on activation of v-src and glucocorticoid receptor (GR), indicating that different chaperone mechanisms can be utilized for these clients. These results provide a detailed guide for understanding Hsp90 mechanism and highlight the potential for inhibitors of Hsp90 that target a subset of clients.

"Walking in a maze": community providers' difficulties coordinating health care for homeless patients

Fri, 10/14/2016 - 12:12pm

BACKGROUND: While dual usage of US Department of Veterans Affairs (VA) and non-VA health services increases access to care and choice for veterans, it is also associated with a number of negative consequences including increased morbidity and mortality. Veterans with multiple health conditions, such as the homeless, may be particularly susceptible to the adverse effects of dual use. Homeless veteran dual use is an understudied yet timely topic given the Patient Protection and Affordable Care Act and Veterans Choice Act of 2014, both of which may increase non-VA care for this population. The study purpose was to evaluate homeless veteran dual use of VA and non-VA health care by describing the experiences, perspectives, and recommendations of community providers who care for the population.

METHODS: Three semi-structured focus group interviews were conducted with medical, dental, and behavioral health providers at a large, urban Health Care for the Homeless (HCH) program. Qualitative content analysis procedures were used.

RESULTS: HCH providers experienced challenges coordinating care with VA medical centers for their veteran patients. Participants lacked knowledge about the VA health care system and were unable to help their patients navigate it. The HCH and VA medical centers lacked clear lines of communication. Providers could not access the VA medical records of their patients and felt this hampered the quality and efficiency of care veterans received.

CONCLUSIONS: Substantial challenges exist in coordinating care for homeless veteran dual users. Our findings suggest recommendations related to education, communication, access to electronic medical records, and collaborative partnerships. Without dedicated effort to improve coordination, dual use is likely to exacerbate the fragmented care that is the norm for many homeless persons.

Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

Thu, 10/13/2016 - 8:53pm

Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells

Thu, 10/13/2016 - 8:53pm

The organ of Corti has evolved a panoply of cells with extraordinary morphological specializations to harness, direct, and transduce mechanical energy into electrical signals. Among the cells with prominent apical specializations are hair cells and nearby supporting cells. At the apical surface of each hair cell is a mechanosensitive hair bundle of filamentous actin (F-actin)-based stereocilia, which insert rootlets into the F-actin meshwork of the underlying cuticular plate, a rigid organelle considered to hold the stereocilia in place. Little is known about the protein composition and development of the cuticular plate or the apicolateral specializations of organ of Corti supporting cells. We show that supervillin, an F-actin cross-linking protein, localizes to cuticular plates in hair cells of the mouse cochlea and vestibule and zebrafish sensory epithelia. Moreover, supervillin localizes near the apicolateral margins within the head plates of Deiters' cells and outer pillar cells, and proximal to the apicolateral margins of inner phalangeal cells, adjacent to the junctions with neighboring hair cells. Overall, supervillin localization suggests this protein may shape the surface structure of the organ of Corti.

Associations of Peripubertal Serum Dioxin and Polychlorinated Biphenyl Concentrations with Pubertal Timing among Russian Boys

Thu, 10/13/2016 - 8:53pm

BACKGROUND: Dioxins, furans, and polychlorinated biphenyls (PCBs), dioxin-like and nondioxin-like, have been linked to alterations in puberty.

OBJECTIVES: We examined the association of peripubertal serum levels of these compounds (and their toxic equivalents (TEQs)) with pubertal onset and maturity among Russian boys enrolled at ages 8-9 years and followed prospectively through ages 17-18 years.

METHODS: At enrollment, 473 boys had serum dioxin-like compounds and PCBs measured. At the baseline visit and annually until age 17-18 years, a physician performed pubertal staging [Genitalia (G), Pubarche (P), and testicular volume (TV)]. 315 subjects completed the follow-up visit at 17-18 years of age. Pubertal onset was defined as TV > 3 mL, G2, or P2. Sexual maturity was defined as TV > /=20 mL, G5, or P5. Multivariable interval-censored models were used to evaluate associations of lipid-standardized concentrations with pubertal timing.

RESULTS: Medians (interquartile ranges) of the sum of dioxin-like compounds, TEQs, and nondioxin-like-PCBs were 362 pg/g lipid (279-495), 21.1 pg TEQ/g lipid (14.4-33.2), and 250 ng/g lipid (164-395), respectively. In adjusted models, the highest compared to lowest TEQ quartile was associated with later pubertal onset (months; 95% CI) [TV 11.6 (3.8, 19.4); G2 10.1 (1.4, 18.8)] and sexual maturity [TV 11.6 (5.7, 17.6); G5 9.7 (3.1, 16.2)]. However, the highest compared to the lowest quartile of nondioxin-like-PCBs, when co-adjusted by TEQs, was associated with earlier pubertal onset [TV -8.3 (-16.2, -0.3)] and sexual maturity [TV -6.3 (-12.2, -0.3); G5 -7.2 (-13.8, -0.6)]; the nondioxin-like-PCB associations were only significant when adjusted for TEQs. TEQs and PCBs were not significantly associated with pubic hair development.

CONCLUSIONS: Our results suggest that TEQs may delay, while nondioxin-like-PCBs advance, the timing of male puberty.

The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation

Thu, 10/13/2016 - 8:53pm

Cancer cells reprogram cellular metabolism to meet the demands of growth. Identification of the regulatory machinery that regulates cancer-specific metabolic changes may open new avenues for anti-cancer therapeutics. The epigenetic regulator BRG1 is a catalytic ATPase for some mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is a well-characterized tumor suppressor in some human cancers, but is frequently overexpressed without mutation in other cancers, including breast cancer. Here we demonstrate that BRG1 upregulates de novo lipogenesis and that this is crucial for cancer cell proliferation. Knockdown of BRG1 attenuates lipid synthesis by impairing the transcription of enzymes catalyzing fatty acid and lipid synthesis. Remarkably, exogenous addition of palmitate, the key intermediate in fatty acid synthesis, rescued the cancer cell proliferation defect caused by BRG1 knockdown. Our work suggests that targeting BRG1 to reduce lipid metabolism and, thereby, to reduce proliferation, has promise for epigenetic therapy in triple negative breast cancer.

Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit

Thu, 10/13/2016 - 8:53pm

The acetyl post-translational modification of chromatin at selected histone lysine residues is interpreted by an acetyl-lysine specific interaction with bromodomain reader modules. Here we report the discovery of the potent, acetyl-lysine-competitive, and cell active inhibitor PFI-3 that binds to certain family VIII bromodomains while displaying significant, broader bromodomain family selectivity. The high specificity of PFI-3 for family VIII was achieved through a novel bromodomain binding mode of a phenolic headgroup that led to the unusual displacement of water molecules that are generally retained by most other bromodomain inhibitors reported to date. The medicinal chemistry program that led to PFI-3 from an initial fragment screening hit is described in detail, and additional analogues with differing family VIII bromodomain selectivity profiles are also reported. We also describe the full pharmacological characterization of PFI-3 as a chemical probe, along with phenotypic data on adipocyte and myoblast cell differentiation assays.

NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence

Thu, 10/13/2016 - 8:53pm

Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive owing to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found the upregulation of nuclear factor of activated T cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1beta, IL6 and SPP1 (osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten null-driven prostate tumorigenesis by overcoming the PTEN loss-induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.

A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis

Thu, 10/13/2016 - 8:53pm

Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.

SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells

Thu, 10/13/2016 - 8:53pm

The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.

Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics

Thu, 10/13/2016 - 8:53pm

Derepression of DUX4 in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of antisense phosphorodiamidate morpholino oligonucleotides to suppress DUX4 expression and function in FSHD myotubes and xenografts. The most effective was phosphorodiamidate morpholino oligonucleotide FM10, which targets the polyadenylation signal of DUX4. FM10 had no significant cell toxicity, and RNA-seq analyses of FSHD and control myotubes revealed that FM10 down-regulated many transcriptional targets of DUX4, without overt off-target effects. Electroporation of FM10 into FSHD patient muscle xenografts in mice also down-regulated DUX4 and DUX4 targets. These findings demonstrate the potential of antisense phosphorodiamidate morpholino oligonucleotides as an FSHD therapeutic option.

RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells

Thu, 10/13/2016 - 8:53pm

RUNX1 is a transcription factor functioning both as an oncogene and a tumor suppressor in breast cancer. RUNX1 alters chromatin structure in cooperation with chromatin modifier and remodeling enzymes. In this study, we examined the relationship between RUNX1-mediated transcription and genome organization. We characterized genome-wide RUNX1 localization and performed RNA-seq and Hi-C in RUNX1-depleted and control MCF-7 breast cancer cells. RNA-seq analysis showed that RUNX1 depletion led to up-regulation of genes associated with chromatin structure and down-regulation of genes related to extracellular matrix biology, as well as NEAT1 and MALAT1 lncRNAs. Our ChIP-Seq analysis supports a prominent role for RUNX1 in transcriptional activation. About 30% of all RUNX1 binding sites were intergenic, indicating diverse roles in promoter and enhancer regulation and suggesting additional functions for RUNX1. Hi-C analysis of RUNX1-depleted cells demonstrated that overall three-dimensional genome organization is largely intact, but indicated enhanced association of RUNX1 near Topologically Associating Domain (TAD) boundaries and alterations in long-range interactions. These results suggest an architectural role for RUNX1 in fine-tuning local interactions rather than in global organization. Our results provide novel insight into RUNX1-mediated perturbations of higher-order genome organization that are functionally linked with RUNX1-dependent compromised gene expression in breast cancer cells.