Syndicate content
Recent documents in eScholarship@UMMS
Updated: 2 hours 36 min ago

Innate PLZF+CD4+ alphabeta T cells develop and expand in the absence of Itk

Tue, 10/06/2015 - 4:37pm

T cell development in the thymus produces multiple lineages of cells, including innate T cells. Studies in mice harboring alterations in TCR signaling proteins or transcriptional regulators have revealed an expanded population of CD4(+) innate T cells in the thymus that produce IL-4 and express the transcription factor promyelocytic leukemia zinc finger (PLZF). In these mice, IL-4 produced by the CD4(+)PLZF(+) T cell population leads to the conversion of conventional CD8(+) thymocytes into innate CD8(+) T cells resembling memory T cells expressing eomesodermin. The expression of PLZF, the signature invariant NKT cell transcription factor, in these innate CD4(+) T cells suggests that they might be a subset of alphabeta or gammadelta TCR(+) NKT cells or mucosal-associated invariant T (MAIT) cells. To address these possibilities, we characterized the CD4(+)PLZF(+) innate T cells in itk(-/-) mice. We show that itk(-/-) innate PLZF(+)CD4(+) T cells are not CD1d-dependent NKT cells, MR1-dependent MAIT cells, or gammadelta T cells. Furthermore, although the itk(-/-) innate PLZF(+)CD4(+) T cells express alphabeta TCRs, neither beta2-microglobulin-dependent MHC class I nor any MHC class II molecules are required for their development. In contrast to invariant NKT cells and MAIT cells, this population has a highly diverse TCRalpha-chain repertoire. Analysis of peripheral tissues indicates that itk(-/-) innate PLZF(+)CD4(+) T cells preferentially home to spleen and mesenteric lymph nodes owing to increased expression of gut-homing receptors, and that their expansion is regulated by commensal gut flora. These data support the conclusion that itk(-/-) innate PLZF(+)CD4(+) T cells are a novel subset of innate T cells.

mu-Opioid inhibition of Ca2+ currents and secretion in isolated terminals of the neurohypophysis occurs via ryanodine-sensitive Ca2+ stores

Tue, 10/06/2015 - 4:37pm

mu-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, mu-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on kappa-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.

HTT-lowering reverses Huntington's disease immune dysfunction caused by NFkappaB pathway dysregulation

Tue, 10/06/2015 - 4:37pm

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFkappaB pathway, whereby it interacts with IKKgamma, leads to increased degradation of IkappaB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.

Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction

Tue, 10/06/2015 - 4:37pm

Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ.

Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue

Tue, 10/06/2015 - 4:37pm

Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent insertion mutants representing nearly 200,000 unique genotypes were generated in fully virulent Y. pestis. Each mutant in the library was assayed for its ability to proliferate in vitro on rich medium and in mice following intravenous injection. Virtually all genes previously established to contribute to virulence following intravenous infection showed significant fitness defects, with the exception of genes for yersiniabactin biosynthesis, which were masked by strong intercellular complementation effects. We also identified more than 30 genes with roles in nutrient acquisition and metabolism as experiencing strong selection during infection. Many of these genes had not previously been implicated in Y. pestis virulence. We further examined the fitness defects of strains carrying mutations in two such genes-encoding a branched-chain amino acid importer (brnQ) and a glucose importer (ptsG)-both in vivo and in a novel defined synthetic growth medium with nutrient concentrations matching those in serum. Our findings suggest that diverse nutrient limitations in deep tissue play a more important role in controlling bacterial infection than has heretofore been appreciated. Because much is known about Y. pestis pathogenesis, this study also serves as a test case that assesses the ability of Tn-seq to detect virulence genes.

IMPORTANCE: Our understanding of the functions required by bacteria to grow in deep tissues is limited, in part because most growth studies of pathogenic bacteria are conducted on laboratory media that do not reflect conditions prevailing in infected animal tissues. Improving our knowledge of this aspect of bacterial biology is important as a potential pathway to the development of novel therapeutics. Yersinia pestis, the plague bacterium, is highly virulent due to its rapid dissemination and growth in deep tissues, making it a good model for discovering bacterial adaptations that promote rapid growth during infection. Using Tn-seq, a genome-wide fitness profiling technique, we identified several functions required for fitness of Y. pestis in vivo that were not previously known to be important. Most of these functions are needed to acquire or synthesize nutrients. Interference with these critical nutrient acquisition pathways may be an effective strategy for designing novel antibiotics and vaccines.

Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming

Tue, 10/06/2015 - 4:36pm

Although transcriptome analysis can uncover the molecular changes that occur during induced reprogramming, the functional requirements for a given factor during stepwise cell-fate transitions are left unclear. Here, we used a genome-wide RNAi screen and performed integrated transcriptome analysis to identify key genes and cellular events required at the transition steps in reprogramming. Genes associated with cell signaling pathways (e.g., Itpr1, Itpr2, and Pdia3) constitute the major regulatory networks before cells acquire pluripotency. Activation of a specific gene set (e.g., Utf1 or Tdgf1) is important for mature induced pluripotent stem cell formation. Strikingly, a major proportion of RNAi targets ( approximately 53% to 70%) includes genes whose expression levels are unchanged during reprogramming. Among these non-differentially expressed genes, Dmbx1, Hnf4g, Nobox, and Asb4 are important, whereas Nfe2, Cdkn2aip, Msx3, Dbx1, Lzts1, Gtf2i, and Ankrd22 are roadblocks to reprogramming. Together, our results provide a wealth of information about gene functions required at transition steps during reprogramming.

Generation of high-titer RCAS virus from DF1 chicken fibroblasts

Tue, 10/06/2015 - 4:36pm

RCAS viruses are replication-competent in avian cells, but are replication-deficient in mammalian cells. Therefore, high-titer RCAS virus stocks can be generated only in avian cells. The chicken fibroblast cell line DF1 is well suited for this purpose. Successful infection of target mammalian cells, particularly in vivo, is dependent on the production of high titer viruses by DF1 cells. Moreover, consistency in viral titer helps to ensure uniformity in results produced following the use of independent lots of virus producer cells. Therefore, it is critical to determine the viral titer before initiating these experiments. Because several factors, including insert size and the effect of the inserted gene product on the viability of DF1 cells, influence viral titer, the production of high virus titers cannot be assumed. For RCASBP-A-based viruses, a titer of > 1 x 10(7) IU/mL is considered appropriate. Importantly, the virus reverse transcriptase is error prone; errors will accumulate in the virus produced over time. Therefore, virus producer cells should not be cultured for > 4-6 wk before being replaced with fresh producer cells. Low passage virus producer cells may be frozen and stored at -80 degrees C; thawed cells will not display a reduction in virus titer. Virus can be collected regularly, concentrated, and stored at -80 degrees C for long-term use; thawed viral stocks typically show a 10-fold decrease in titer.

FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation

Tue, 10/06/2015 - 4:36pm

Nucleotide excision repair (NER) is critical for the repair of DNA lesions induced by UV radiation, but its contribution in replicating cells is less clear. Here, we show that dual incision by NER endonucleases, including XPF and XPG, promotes the S-phase accumulation of the BRCA1 and Fanconi anemia-associated DNA helicase FANCJ to sites of UV-induced damage. FANCJ promotes replication protein A phosphorylation and the arrest of DNA synthesis following UV irradiation. Interaction defective mutants of FANCJ reveal that BRCA1 binding is not required for FANCJ localization, whereas interaction with the mismatch repair (MMR) protein MLH1 is essential. Correspondingly, we find that FANCJ, its direct interaction with MLH1, and the MMR protein MSH2 function in a common pathway in response to UV irradiation. FANCJ-deficient cells are not sensitive to killing by UV irradiation, yet we find that DNA mutations are significantly enhanced. Thus, we considered that FANCJ deficiency could be associated with skin cancer. Along these lines, in melanoma we found several somatic mutations in FANCJ, some of which were previously identified in hereditary breast cancer and Fanconi anemia. Given that, mutations in XPF can also lead to Fanconi anemia, we propose collaborations between Fanconi anemia, NER, and MMR are necessary to initiate checkpoint activation in replicating human cells to limit genomic instability.

Drosophila learn opposing components of a compound food stimulus

Tue, 10/06/2015 - 4:36pm

Dopaminergic neurons provide value signals in mammals and insects. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior.

Pediatric Oncology Principles

Mon, 10/05/2015 - 3:15pm

This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist presents an overview of childhood cancer, including the incidence, distribution, diagnosis, treatment, and survivorship.

Implementing Wellness into Mental Health and Addiction Recovery: The Addressing Wellness Through Organizational Change (AWTOC) Approach

Mon, 10/05/2015 - 10:31am

There are many opportunities for clinicians and leaders in mental health and addiction treatment programs to champion more discussion about wellness and integrate evidence-based treatments that can decrease patient morbidity and mortality. However, many clinicians and staff may not feel trained and prepared to help individuals adequately address wellness goals, to integrate wellness into their routine clinical practice, or to make appropriate referrals to community resources. To address this service and training gap, the UMass Department of Psychiatry developed the Addressing Wellness Through Organization Change (AWTOC) approach, based upon the Addressing Problems Through Organizational Change (APTOC) model developed by Douglas Ziedonis, M.D., M.P.H. which has been used previously to address tobacco cessation (Ziedonis et al., 2007).

Biodistribution and function of extracellular miRNA-155 in mice

Thu, 10/01/2015 - 4:20pm

Circulating miRNAs can be found in extracellular vesicles (EV) and could be involved in intercellular communication. Here, we report the biodistribution of EV associated miR-155 using miR-155 KO mouse model. Administration of exosomes loaded with synthetic miR-155 mimic into miR-155 KO mice resulted in a rapid accumulation and clearance of miR-155 in the plasma with subsequent distribution in the liver, adipose tissue, lung, muscle and kidney (highest to lowest, respectively). miR-155 expression was detected in isolated hepatocytes and liver mononuclear cells of recipient KO mice suggesting its cellular uptake. In vitro, exosome-mediated restoration of miR-155 in Kupffer cells from miR-155 deficient mice augmented their LPS-induced MCP1 mRNA increase. The systemic delivery of wild type plasma to miR-155 KO mice also resulted in a rapid accumulation of miR-155 in the circulation and distribution to the liver and adipose tissue. In summary, our results demonstrate tissue biodistribution and biologic function of EV-associated miR-155.

Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans

Thu, 10/01/2015 - 4:20pm

Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.

Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal

Thu, 10/01/2015 - 4:20pm

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.

Colorectal Cancer

Wed, 09/30/2015 - 9:35am

This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist presents an overview of colorectal cancer, including etiology, screening, pathology, staging, and treatment.

Functions of FUS/TLS from DNA repair to stress response: implications for ALS

Wed, 09/23/2015 - 9:53am

Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional DNA-/RNA-binding protein that is involved in a variety of cellular functions including transcription, protein translation, RNA splicing, and transport. FUS was initially identified as a fusion oncoprotein, and thus, the early literature focused on the role of FUS in cancer. With the recent discoveries revealing the role of FUS in neurodegenerative diseases, namely amyotrophic lateral sclerosis and frontotemporal lobar degeneration, there has been a renewed interest in elucidating the normal functions of FUS. It is not clear which, if any, endogenous functions of FUS are involved in disease pathogenesis. Here, we review what is currently known regarding the normal functions of FUS with an emphasis on DNA damage repair, RNA processing, and cellular stress response. Further, we discuss how ALS-causing mutations can potentially alter the role of FUS in these pathways, thereby contributing to disease pathogenesis.

Bisulfighter: accurate detection of methylated cytosines and differentially methylated regions

Tue, 09/22/2015 - 12:31pm

Analysis of bisulfite sequencing data usually requires two tasks: to call methylated cytosines (mCs) in a sample, and to detect differentially methylated regions (DMRs) between paired samples. Although numerous tools have been proposed for mC calling, methods for DMR detection have been largely limited. Here, we present Bisulfighter, a new software package for detecting mCs and DMRs from bisulfite sequencing data. Bisulfighter combines the LAST alignment tool for mC calling, and a novel framework for DMR detection based on hidden Markov models (HMMs). Unlike previous attempts that depend on empirical parameters, Bisulfighter can use the expectation-maximization algorithm for HMMs to adjust parameters for each data set. We conduct extensive experiments in which accuracy of mC calling and DMR detection is evaluated on simulated data with various mC contexts, read qualities, sequencing depths and DMR lengths, as well as on real data from a wide range of biological processes. We demonstrate that Bisulfighter consistently achieves better accuracy than other published tools, providing greater sensitivity for mCs with fewer false positives, more precise estimates of mC levels, more exact locations of DMRs and better agreement of DMRs with gene expression and DNase I hypersensitivity. The source code is available at

Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents

Tue, 09/22/2015 - 12:31pm

RNAi screens have implicated hundreds of host proteins as HIV-1 dependency factors (HDFs). While informative, these early studies overlap poorly due to false positives and false negatives. To ameliorate these issues, we combined information from the existing HDF screens together with new screens performed with multiple orthologous RNAi reagents (MORR). In addition to being traditionally validated, the MORR screens and the historical HDF screens were quantitatively integrated by the adaptation of an established analysis program, RIGER, for the collective interpretation of each gene's phenotypic significance. False positives were addressed by the removal of poorly expressed candidates through gene expression filtering, as well as with GESS, which identifies off-target effects. This workflow produced a quantitatively integrated network of genes that modulate HIV-1 replication. We further investigated the roles of GOLGI49, SEC13, and COG in HIV-1 replication. Collectively, the MORR-RIGER method minimized the caveats of RNAi screening and improved our understanding of HIV-1-host cell interactions.

Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes

Tue, 09/22/2015 - 12:31pm

Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.

Optimization of transcription factor binding map accuracy utilizing knockout-mouse models

Tue, 09/22/2015 - 12:31pm

Genome-wide assessment of protein-DNA interaction by chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) is a key technology for studying transcription factor (TF) localization and regulation of gene expression. Signal-to-noise-ratio and signal specificity in ChIP-seq studies depend on many variables, including antibody affinity and specificity. Thus far, efforts to improve antibody reagents for ChIP-seq experiments have focused mainly on generating higher quality antibodies. Here we introduce KOIN (knockout implemented normalization) as a novel strategy to increase signal specificity and reduce noise by using TF knockout mice as a critical control for ChIP-seq data experiments. Additionally, KOIN can identify 'hyper ChIPable regions' as another source of false-positive signals. As the use of the KOIN algorithm reduces false-positive results and thereby prevents misinterpretation of ChIP-seq data, it should be considered as the gold standard for future ChIP-seq analyses, particularly when developing ChIP-assays with novel antibody reagents.